文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利什曼病诊断、药物发现和疫苗开发中深度学习技术的范围综述

Scoping Review of Deep Learning Techniques for Diagnosis, Drug Discovery, and Vaccine Development in Leishmaniasis.

作者信息

Sadeghi Alireza, Sadeghi Mahdieh, Fakhar Mahdi, Zakariaei Zakaria, Sadeghi Mohammadreza

机构信息

Intelligent Mobile Robot Lab (IMRL), Department of Mechatronics Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.

Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran.

出版信息

Transbound Emerg Dis. 2024 Jan 17;2024:6621199. doi: 10.1155/2024/6621199. eCollection 2024.


DOI:10.1155/2024/6621199
PMID:40303156
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12019899/
Abstract

, a single-cell parasite prevalent in tropical and subtropical regions worldwide, can cause varying degrees of leishmaniasis, ranging from self-limiting skin lesions to potentially fatal visceral complications. As such, the parasite has been the subject of much interest in the scientific community. In recent years, advances in diagnostic techniques such as flow cytometry, molecular biology, proteomics, and nanodiagnosis have contributed to progress in the diagnosis of this deadly disease. Additionally, the emergence of artificial intelligence (AI), including its subbranches such as machine learning and deep learning, has revolutionized the field of medicine. The high accuracy of AI and its potential to reduce human and laboratory errors make it an especially promising tool in diagnosis and treatment. Despite the promising potential of deep learning in the medical field, there has been no review study on the applications of this technology in the context of leishmaniasis. To address this gap, we provide a scoping review of deep learning methods in the diagnosis of the disease, drug discovery, and vaccine development. In conducting a thorough search of available literature, we analyzed articles in detail that used deep learning methods for various aspects of the disease, including diagnosis, drug discovery, vaccine development, and related proteins. Each study was individually analyzed, and the methodology and results were presented. As the first and only review study on this topic, this paper serves as a quick and comprehensive resource and guide for the future research in this field.

摘要

利什曼原虫是一种单细胞寄生虫,在全球热带和亚热带地区普遍存在,可导致从自限性皮肤病变到潜在致命性内脏并发症等不同程度的利什曼病。因此,该寄生虫一直是科学界备受关注的对象。近年来,流式细胞术、分子生物学、蛋白质组学和纳米诊断等诊断技术的进步推动了这种致命疾病诊断方面的进展。此外,包括机器学习和深度学习等分支在内的人工智能(AI)的出现,彻底改变了医学领域。人工智能的高准确性及其减少人为和实验室误差的潜力使其成为诊断和治疗中特别有前景的工具。尽管深度学习在医学领域具有广阔的潜力,但尚未有关于该技术在利什曼病背景下应用的综述研究。为填补这一空白,我们对深度学习方法在该疾病诊断、药物发现和疫苗开发方面的应用进行了一项范围综述。在全面检索现有文献时,我们详细分析了使用深度学习方法研究该疾病各个方面的文章,包括诊断、药物发现、疫苗开发以及相关蛋白质。对每项研究进行了单独分析,并呈现了方法和结果。作为关于该主题的第一项也是唯一一项综述研究,本文为该领域未来的研究提供了快速且全面的资源和指南。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a12/12019899/9d5c94a6fddd/TBED2024-6621199.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a12/12019899/e1e0cdf476cb/TBED2024-6621199.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a12/12019899/9d5c94a6fddd/TBED2024-6621199.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a12/12019899/e1e0cdf476cb/TBED2024-6621199.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a12/12019899/9d5c94a6fddd/TBED2024-6621199.002.jpg

相似文献

[1]
Scoping Review of Deep Learning Techniques for Diagnosis, Drug Discovery, and Vaccine Development in Leishmaniasis.

Transbound Emerg Dis. 2024-1-17

[2]
Identifying vaccine targets for anti-leishmanial vaccine development.

Expert Rev Vaccines. 2014-4

[3]
Advances in Vaccines: Current Development and Future Prospects.

Pathogens. 2024-9-20

[4]
Challenges in drug discovery targeting TriTryp diseases with an emphasis on leishmaniasis.

Int J Parasitol Drugs Drug Resist. 2018-9-28

[5]
Proteomic approaches for drug discovery against tegumentary leishmaniasis.

Biomed Pharmacother. 2017-9-1

[6]
Protease inhibitors in potential drug development for Leishmaniasis.

Indian J Biochem Biophys. 2013-10

[7]
Assay development in leishmaniasis drug discovery: a comprehensive review.

Expert Opin Drug Discov. 2022-2

[8]
Leishmaniasis.

Lancet. 1999-10-2

[9]
Advancement in leishmaniasis diagnosis and therapeutics: An update.

Eur J Pharmacol. 2021-11-5

[10]
Nanomedicine in leishmaniasis: A promising tool for diagnosis, treatment and prevention of disease - An update overview.

Eur J Pharmacol. 2022-5-15

本文引用的文献

[1]
Vaccinomics-based next-generation multi-epitope chimeric vaccine models prediction against hierarchical subtractive proteomics and immunoinformatics approach.

Front Immunol. 2023

[2]
CTA-UNet: CNN-transformer architecture UNet for dental CBCT images segmentation.

Phys Med Biol. 2023-8-31

[3]
Exploring deep residual network based features for automatic schizophrenia detection from EEG.

Phys Eng Sci Med. 2023-6

[4]
Immunoinformatics Approach to Design a Multi-Epitope Vaccine against Cutaneous Leishmaniasis.

Vaccines (Basel). 2023-2-2

[5]
Immunoinformatics Approach to Design a Multi-Epitope Nanovaccine against Parasite: Elicitation of Cellular Immune Responses.

Vaccines (Basel). 2023-1-30

[6]
TOPSIS aided ensemble of CNN models for screening COVID-19 in chest X-ray images.

Sci Rep. 2022-9-14

[7]
Development of Novel Anti-Leishmanials: The Case for Structure-Based Approaches.

Pathogens. 2022-8-22

[8]
In-silico design of an immunoinformatics based multi-epitope vaccine against Leishmania donovani.

BMC Bioinformatics. 2022-8-5

[9]
Correction of out-of-focus microscopic images by deep learning.

Comput Struct Biotechnol J. 2022-4-20

[10]
Recent advances and clinical applications of deep learning in medical image analysis.

Med Image Anal. 2022-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索