Department of Computer Science and Engineering, Jadavpur University, Kolkata, 700032, India.
Department of Electrical Engineering, Jadavpur University, Kolkata, 700032, India.
Sci Rep. 2022 Sep 14;12(1):15409. doi: 10.1038/s41598-022-18463-7.
The novel coronavirus (COVID-19), has undoubtedly imprinted our lives with its deadly impact. Early testing with isolation of the individual is the best possible way to curb the spread of this deadly virus. Computer aided diagnosis (CAD) provides an alternative and cheap option for screening of the said virus. In this paper, we propose a convolution neural network (CNN)-based CAD method for COVID-19 and pneumonia detection from chest X-ray images. We consider three input types for three identical base classifiers. To capture maximum possible complementary features, we consider the original RGB image, Red channel image and the original image stacked with Robert's edge information. After that we develop an ensemble strategy based on the technique for order preference by similarity to an ideal solution (TOPSIS) to aggregate the outcomes of base classifiers. The overall framework, called TOPCONet, is very light in comparison with standard CNN models in terms of the number of trainable parameters required. TOPCONet achieves state-of-the-art results when evaluated on the three publicly available datasets: (1) IEEE COVID-19 dataset + Kaggle Pneumonia Dataset, (2) Kaggle Radiography dataset and (3) COVIDx.
新型冠状病毒(COVID-19)无疑给我们的生活带来了致命的影响。早期对个体进行检测和隔离是遏制这种致命病毒传播的最佳方式。计算机辅助诊断(CAD)为这种病毒的筛查提供了一种替代且廉价的选择。在本文中,我们提出了一种基于卷积神经网络(CNN)的 CAD 方法,用于从胸部 X 射线图像中检测 COVID-19 和肺炎。我们考虑了三种输入类型,用于三个相同的基础分类器。为了捕获尽可能多的互补特征,我们考虑了原始 RGB 图像、红色通道图像以及原始图像与罗伯特边缘信息叠加的图像。之后,我们开发了一种基于逼近理想解排序技术(TOPSIS)的集成策略,对基础分类器的结果进行聚合。与标准 CNN 模型相比,我们称之为 TOPCONet 的整体框架在所需的可训练参数数量方面非常轻量级。当在三个公开可用的数据集上进行评估时,TOPCONet 取得了最先进的结果:(1)IEEE COVID-19 数据集+ Kaggle 肺炎数据集,(2)Kaggle 射线数据集和(3)COVIDx。