Mendes Fernando Henrique de Paula E Silva, Turatti Douglas Eduardo, Pumi Guilherme
Graduate Program in Statistics - Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
Aalborg University Business School - Aalborg University, Aalborg, Denmark.
J Appl Stat. 2024 Oct 24;52(6):1219-1238. doi: 10.1080/02664763.2024.2419505. eCollection 2025.
One of the most important hyper-parameters in duration-dependent Markov-switching (DDMS) models is the duration of the hidden states. Because there is currently no procedure for estimating this duration or testing whether a given duration is appropriate for a given data set, an ad hoc duration choice must be heuristically justified. In this paper, we propose and examine a methodology that mitigates the choice of duration in DDMS models when forecasting is the goal. The novelty of this paper is the use of the asymmetric Aranda-Ordaz parametric link function to model transition probabilities in DDMS models, instead of the commonly applied logit link. The idea behind this approach is that any incorrect duration choice is compensated for by the parameter in the link, increasing model flexibility. Two Monte Carlo simulations, based on classical applications of DDMS models, are employed to evaluate the methodology. In addition, an empirical investigation is carried out to forecast the volatility of the S&P500, which showcases the capabilities of the proposed model.
在持续时间依赖的马尔可夫切换(DDMS)模型中,最重要的超参数之一是隐藏状态的持续时间。由于目前没有估计此持续时间或测试给定持续时间是否适用于给定数据集的程序,因此必须通过启发式方法为临时的持续时间选择提供依据。在本文中,我们提出并研究了一种在以预测为目标时减轻DDMS模型中持续时间选择的方法。本文的新颖之处在于使用非对称的阿兰达 - 奥尔达斯参数链接函数来对DDMS模型中的转移概率进行建模,而不是常用的对数链接函数。这种方法背后的想法是,链接中的参数可以补偿任何不正确的持续时间选择,从而增加模型的灵活性。基于DDMS模型的经典应用进行了两次蒙特卡罗模拟,以评估该方法。此外,还进行了一项实证研究来预测标准普尔500指数的波动率,展示了所提出模型的能力。