Suppr超能文献

使用散度对潜伏期和暴露时间进行稳健估计。

Robust estimation of the incubation period and the time of exposure using -divergence.

作者信息

Yoneoka Daisuke, Kawashima Takayuki, Tanoue Yuta, Nomura Shuhei, Eguchi Akifumi

机构信息

National Institute of Infectious Diseases, Tokyo, Japan.

Tokyo Institute of Technology, Tokyo, Japan.

出版信息

J Appl Stat. 2024 Nov 6;52(6):1239-1257. doi: 10.1080/02664763.2024.2420221. eCollection 2025.

Abstract

Estimating the exposure time to single infectious pathogens and the associated incubation period, based on symptom onset data, is crucial for identifying infection sources and implementing public health interventions. However, data from rapid surveillance systems designed for early outbreak warning often come with outliers originated from individuals who were not directly exposed to the initial source of infection (i.e. tertiary and subsequent infection cases), making the estimation of exposure time challenging. To address this issue, this study uses a three-parameter lognormal distribution and proposes a new -divergence-based robust approach for estimating the parameter corresponding to exposure time with a tailored optimization procedure using the majorization-minimization algorithm, which ensures the monotonic decreasing property of the objective function. Comprehensive numerical experiments and real data analyses suggest that our method is superior to conventional methods in terms of bias, mean squared error, and coverage probability of 95% confidence intervals.

摘要

基于症状出现数据估计单一传染病原体的暴露时间及相关潜伏期,对于识别感染源和实施公共卫生干预至关重要。然而,为早期疫情预警设计的快速监测系统的数据,往往包含来自未直接接触初始感染源的个体(即第三代及后续感染病例)的异常值,这使得暴露时间的估计具有挑战性。为解决这一问题,本研究使用三参数对数正态分布,并提出一种基于新散度的稳健方法,通过使用主元最小化算法的定制优化程序来估计与暴露时间对应的参数,该算法可确保目标函数的单调递减性质。综合数值实验和实际数据分析表明,我们的方法在偏差、均方误差和95%置信区间的覆盖概率方面优于传统方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba57/12035932/baaa23c96eba/CJAS_A_2420221_F0001_OC.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验