Suppr超能文献

基于全球定位系统(GPS)数据的首次通过时间分析为估算野生动物传染病管理的限制区域提供了一种新方法:以非洲猪瘟为例的案例研究

First-Passage Time Analysis Based on GPS Data Offers a New Approach to Estimate Restricted Zones for the Management of Infectious Diseases in Wildlife: A Case Study Using the Example of African Swine Fever.

作者信息

Wielgus Elodie, Klamm Alisa, Conraths Franz J, Dormann Carsten F, Henrich Maik, Kronthaler Franz, Heurich Marco

机构信息

National Park Monitoring and Animal Management, Bavarian Forest National Park, Freyunger Straße. 2, Grafenau 94481, Germany.

Hainich National Park Administration, Department of Conservation and Research, Bei der Marktkirche 9, Bad Langensalza 99947, Germany.

出版信息

Transbound Emerg Dis. 2023 Aug 25;2023:4024083. doi: 10.1155/2023/4024083. eCollection 2023.

Abstract

An essential part of any disease containment and eradication policy is the implementation of restricted zones, but determining the appropriate size of these zones can be challenging for managers. We designed a new method, based on animal movement, to help assess how large restricted zones should be after a spontaneous outbreak to successfully control infectious diseases in wildlife. Our approach uses first-passage time (FPT) analysis and Cox proportional hazard (CPH) models to calculate and compare the risk of an animal leaving different-sized areas. We illustrate our approach using the example of the African swine fever (ASF) virus and its wild pig reservoir host species, the wild boar (), and we investigate the feasibility of applying this method to other systems. Using GPS data from 57 wild boar living in the Hainich National Park, Germany, we calculate the time spent by each individual in areas of different sizes using FPT analysis. We apply CPH models on the derived data to compare the risk of leaving areas of different sizes and to assess the effects of season and the sex of the wild boar on the risk of leaving. We conduct survival analyses to estimate the risk of leaving an area over time. Our results indicate that the risk of leaving an area decreases exponentially by 10% for each 100 m increase in radius size so that the differences were more pronounced for small sizes. Furthermore, the probability of leaving increases exponentially with time. Wild boar had a similar risk of leaving an area of a given size throughout the year, except in spring and winter, when females had a much lower risk of leaving. Our findings are in agreement with the literature on wild boar movement, further validating our method, and repeated analyses with location data resampled at different rates gave similar results. Our results may be applicable only to our study area, but they demonstrate the applicability of the proposed method to any ecosystem where wild boar populations are likely to be infected with ASF and where restricted zones should be established accordingly. The outlined approach relies solely on the analysis of movement data and provides a useful tool to determine the optimal size of restricted zones. It can also be applied to future outbreaks of other diseases.

摘要

任何疾病控制和根除政策的一个重要组成部分是实施限制区,但确定这些区域的适当规模对管理者来说可能具有挑战性。我们设计了一种基于动物移动的新方法,以帮助评估在自然爆发后限制区应设多大,才能成功控制野生动物中的传染病。我们的方法使用首次通过时间(FPT)分析和Cox比例风险(CPH)模型来计算和比较动物离开不同大小区域的风险。我们以非洲猪瘟(ASF)病毒及其野猪天然宿主物种野猪()为例来说明我们的方法,并研究将此方法应用于其他系统的可行性。利用来自德国海尼希国家公园57头野猪的GPS数据,我们使用FPT分析计算每头野猪在不同大小区域所花费的时间。我们将CPH模型应用于导出的数据,以比较离开不同大小区域的风险,并评估季节和野猪性别对离开风险的影响。我们进行生存分析以估计随时间离开一个区域的风险。我们的结果表明,半径大小每增加100米,离开一个区域的风险就以指数形式降低10%,因此小尺寸区域的差异更为明显。此外,离开的概率随时间呈指数增加。除了春季和冬季雌性离开风险低得多之外,野猪全年离开给定大小区域的风险相似。我们的发现与关于野猪移动的文献一致,进一步验证了我们的方法,并且以不同速率重新采样位置数据进行的重复分析给出了相似的结果。我们的结果可能仅适用于我们的研究区域,但它们证明了所提出的方法适用于任何野猪种群可能感染ASF且应相应设立限制区的生态系统。所概述的方法仅依赖于移动数据分析,并提供了一个确定限制区最佳大小的有用工具。它也可应用于未来其他疾病的爆发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34c3/12017023/cdb4f9bbe7b3/TBED2023-4024083.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验