一种基于非参数最小二乘法的异质性治疗效果简单因果推断方法。

A Simple Nonparametric Least-Squares-Based Causal Inference for Heterogeneous Treatment Effects.

作者信息

Zhang Ying, Xu Yuanfang, Squibb Bristol Myers, Tong Lili, Bakoyannis Giorgos, Huang Bin

机构信息

Department of Biostatistics, University of Nebraska Medical Center.

Department of Biostatistics and Health Data Science, Indiana University.

出版信息

J Nonparametr Stat. 2025;37(1):169-203. doi: 10.1080/10485252.2024.2367674. Epub 2024 Jul 15.

Abstract

Estimating treatment effects is a common practice in making causal inferences. However, it is a challenging task for observational studies because the underlying models for outcome and treatment assignment are unknown. The concept of potential outcomes has been widely adopted in the literature on causal inferences. Building on potential outcomes, we propose a simple nonparametric least-squares spline-based causal inference method to estimate heterogeneous treatment effects in this manuscript. We use empirical process theory to study its asymptotic properties and conduct simulation studies to evaluate its operational characteristics. Based on the estimated heterogeneous treatment effects, we further estimate the average treatment effect and show the asymptotic normality of the estimator. Finally, we apply the proposed method to assess the biological anti-rheumatic treatment effect on children with newly onset juvenile idiopathic arthritis disease using electronic health records from a longitudinal study at Cincinnati Children's Hospital Medical Center.

摘要

估计治疗效果是进行因果推断时的常见做法。然而,对于观察性研究而言,这是一项具有挑战性的任务,因为结果和治疗分配的潜在模型是未知的。潜在结果的概念已在因果推断文献中被广泛采用。基于潜在结果,我们在本手稿中提出一种基于非参数最小二乘样条的简单因果推断方法,以估计异质性治疗效果。我们使用经验过程理论研究其渐近性质,并进行模拟研究以评估其操作特性。基于估计的异质性治疗效果,我们进一步估计平均治疗效果并展示估计量的渐近正态性。最后,我们应用所提出的方法,利用辛辛那提儿童医院医疗中心一项纵向研究的电子健康记录,评估生物抗风湿治疗对新发病的幼年特发性关节炎患儿的治疗效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索