Suppr超能文献

一种基于非参数最小二乘法的异质性治疗效果简单因果推断方法。

A Simple Nonparametric Least-Squares-Based Causal Inference for Heterogeneous Treatment Effects.

作者信息

Zhang Ying, Xu Yuanfang, Squibb Bristol Myers, Tong Lili, Bakoyannis Giorgos, Huang Bin

机构信息

Department of Biostatistics, University of Nebraska Medical Center.

Department of Biostatistics and Health Data Science, Indiana University.

出版信息

J Nonparametr Stat. 2025;37(1):169-203. doi: 10.1080/10485252.2024.2367674. Epub 2024 Jul 15.

Abstract

Estimating treatment effects is a common practice in making causal inferences. However, it is a challenging task for observational studies because the underlying models for outcome and treatment assignment are unknown. The concept of potential outcomes has been widely adopted in the literature on causal inferences. Building on potential outcomes, we propose a simple nonparametric least-squares spline-based causal inference method to estimate heterogeneous treatment effects in this manuscript. We use empirical process theory to study its asymptotic properties and conduct simulation studies to evaluate its operational characteristics. Based on the estimated heterogeneous treatment effects, we further estimate the average treatment effect and show the asymptotic normality of the estimator. Finally, we apply the proposed method to assess the biological anti-rheumatic treatment effect on children with newly onset juvenile idiopathic arthritis disease using electronic health records from a longitudinal study at Cincinnati Children's Hospital Medical Center.

摘要

估计治疗效果是进行因果推断时的常见做法。然而,对于观察性研究而言,这是一项具有挑战性的任务,因为结果和治疗分配的潜在模型是未知的。潜在结果的概念已在因果推断文献中被广泛采用。基于潜在结果,我们在本手稿中提出一种基于非参数最小二乘样条的简单因果推断方法,以估计异质性治疗效果。我们使用经验过程理论研究其渐近性质,并进行模拟研究以评估其操作特性。基于估计的异质性治疗效果,我们进一步估计平均治疗效果并展示估计量的渐近正态性。最后,我们应用所提出的方法,利用辛辛那提儿童医院医疗中心一项纵向研究的电子健康记录,评估生物抗风湿治疗对新发病的幼年特发性关节炎患儿的治疗效果。

相似文献

1
A Simple Nonparametric Least-Squares-Based Causal Inference for Heterogeneous Treatment Effects.
J Nonparametr Stat. 2025;37(1):169-203. doi: 10.1080/10485252.2024.2367674. Epub 2024 Jul 15.
2
A spline-based nonparametric analysis for interval-censored bivariate survival data.
Stat Sin. 2022 Jul;32(3):1541-1562. doi: 10.5705/ss.202019.0296.
3
4
Bayesian causal inference for observational studies with missingness in covariates and outcomes.
Biometrics. 2023 Dec;79(4):3624-3636. doi: 10.1111/biom.13918. Epub 2023 Aug 8.
7
Causal Isotonic Regression.
J R Stat Soc Series B Stat Methodol. 2020 Jul;82(3):719-747. doi: 10.1111/rssb.12372. Epub 2020 May 13.
8
Double robust estimator of average causal treatment effect for censored medical cost data.
Stat Med. 2016 Aug 15;35(18):3101-16. doi: 10.1002/sim.6876. Epub 2016 Jan 27.
9
A doubly robust estimator for the Mann Whitney Wilcoxon rank sum test when applied for causal inference in observational studies.
J Appl Stat. 2024 May 15;51(16):3267-3291. doi: 10.1080/02664763.2024.2346357. eCollection 2024.

本文引用的文献

1
A reference-free R-learner for treatment recommendation.
Stat Methods Med Res. 2023 Feb;32(2):404-424. doi: 10.1177/09622802221144326. Epub 2022 Dec 20.
2
A spline-based nonparametric analysis for interval-censored bivariate survival data.
Stat Sin. 2022 Jul;32(3):1541-1562. doi: 10.5705/ss.202019.0296.
3
Juvenile idiopathic arthritis.
Nat Rev Dis Primers. 2022 Jan 27;8(1):5. doi: 10.1038/s41572-021-00332-8.
4
Multi-Armed Angle-Based Direct Learning for Estimating Optimal Individualized Treatment Rules With Various Outcomes.
J Am Stat Assoc. 2020;115(530):678-691. doi: 10.1080/01621459.2018.1529597. Epub 2019 Apr 11.
6
Phenotypic variability and disparities in treatment and outcomes of childhood arthritis throughout the world: an observational cohort study.
Lancet Child Adolesc Health. 2019 Apr;3(4):255-263. doi: 10.1016/S2352-4642(19)30027-6. Epub 2019 Feb 26.
7
Metalearners for estimating heterogeneous treatment effects using machine learning.
Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4156-4165. doi: 10.1073/pnas.1804597116. Epub 2019 Feb 15.
8
Some methods for heterogeneous treatment effect estimation in high dimensions.
Stat Med. 2018 May 20;37(11):1767-1787. doi: 10.1002/sim.7623. Epub 2018 Mar 6.
9
Greedy outcome weighted tree learning of optimal personalized treatment rules.
Biometrics. 2017 Jun;73(2):391-400. doi: 10.1111/biom.12593. Epub 2016 Oct 4.
10
Recursive partitioning for heterogeneous causal effects.
Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7353-60. doi: 10.1073/pnas.1510489113.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验