Wu Yuan, Zhang Ying, Zhou Junyi
Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27705.
Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198.
Stat Sin. 2022 Jul;32(3):1541-1562. doi: 10.5705/ss.202019.0296.
In this manuscript we propose a spline-based sieve nonparametric maximum likelihood estimation method for joint distribution function with bivariate interval-censored data. We study the asymptotic behavior of the proposed estimator by proving the consistency and deriving the rate of convergence. Based on the sieve estimate of the joint distribution, we also develop an efficient nonparametric test for making inference about the dependence between two interval-censored event times and establish its asymptotic normality. We conduct simulation studies to examine the finite sample performance of the proposed methodology. Finally we apply the method to assess the association between two subtypes of mild cognitive impairment (MCI): amnestic MCI and non-amnestic MCI, for Huntington disease (HD) using data from a 12-year observational cohort study on premanifest HD individuals, PREDICT-HD.
在本手稿中,我们针对具有双变量区间删失数据的联合分布函数,提出了一种基于样条的筛非参数极大似然估计方法。我们通过证明一致性并推导收敛速度来研究所提估计量的渐近行为。基于联合分布的筛估计,我们还开发了一种有效的非参数检验,用于推断两个区间删失事件时间之间的相关性,并确立其渐近正态性。我们进行模拟研究以检验所提方法的有限样本性能。最后,我们应用该方法,利用一项针对临床前期亨廷顿舞蹈病(HD)个体的为期12年的观察性队列研究PREDICT-HD的数据,评估轻度认知障碍(MCI)的两种亚型:遗忘型MCI和非遗忘型MCI之间的关联。