Suppr超能文献

基于多臂角度的直接学习法用于估计具有多种结局的最优个体化治疗规则

Multi-Armed Angle-Based Direct Learning for Estimating Optimal Individualized Treatment Rules With Various Outcomes.

作者信息

Qi Zhengling, Liu Dacheng, Fu Haoda, Liu Yufeng

机构信息

Department of Statistics and Operations Research, University of North Carolina, Chapel Hill, NC.

Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT.

出版信息

J Am Stat Assoc. 2020;115(530):678-691. doi: 10.1080/01621459.2018.1529597. Epub 2019 Apr 11.

Abstract

Estimating an optimal individualized treatment rule (ITR) based on patients' information is an important problem in precision medicine. An optimal ITR is a decision function that optimizes patients' expected clinical outcomes. Many existing methods in the literature are designed for binary treatment settings with the interest of a continuous outcome. Much less work has been done on estimating optimal ITRs in multiple treatment settings with good interpretations. In this article, we propose angle-based direct learning (AD-learning) to efficiently estimate optimal ITRs with multiple treatments. Our proposed method can be applied to various types of outcomes, such as continuous, survival, or binary outcomes. Moreover, it has an interesting geometric interpretation on the effect of different treatments for each individual patient, which can help doctors and patients make better decisions. Finite sample error bounds have been established to provide a theoretical guarantee for AD-learning. Finally, we demonstrate the superior performance of our method via an extensive simulation study and real data applications. Supplementary materials for this article are available online.

摘要

基于患者信息估计最优个体化治疗规则(ITR)是精准医学中的一个重要问题。最优ITR是一种优化患者预期临床结局的决策函数。文献中许多现有方法是针对具有连续结局的二元治疗设置设计的。在具有良好解释性的多种治疗设置中估计最优ITR的工作做得要少得多。在本文中,我们提出基于角度的直接学习(AD学习)来有效估计具有多种治疗的最优ITR。我们提出的方法可以应用于各种类型的结局,如连续结局、生存结局或二元结局。此外,它对每个患者不同治疗的效果具有有趣的几何解释,这有助于医生和患者做出更好的决策。已建立有限样本误差界为AD学习提供理论保证。最后,我们通过广泛的模拟研究和实际数据应用证明了我们方法的优越性能。本文的补充材料可在线获取。

相似文献

3
High-Dimensional Precision Medicine From Patient-Derived Xenografts.源自患者移植瘤的高维精准医学
J Am Stat Assoc. 2021;116(535):1140-1154. doi: 10.1080/01621459.2020.1828091. Epub 2020 Nov 12.
4
5
Active Clinical Trials for Personalized Medicine.个性化医疗的活跃临床试验
J Am Stat Assoc. 2016;111(514):875-887. doi: 10.1080/01621459.2015.1066682. Epub 2016 Aug 18.
6
Residual Weighted Learning for Estimating Individualized Treatment Rules.用于估计个体化治疗规则的残差加权学习
J Am Stat Assoc. 2017;112(517):169-187. doi: 10.1080/01621459.2015.1093947. Epub 2017 May 3.
8
Estimating individualized treatment rules with risk constraint.通过风险约束估计个体化治疗规则。
Biometrics. 2020 Dec;76(4):1310-1318. doi: 10.1111/biom.13232. Epub 2020 Feb 18.
10
Estimating individualized treatment rules for ordinal treatments.估计有序治疗的个体化治疗规则。
Biometrics. 2018 Sep;74(3):924-933. doi: 10.1111/biom.12865. Epub 2018 Mar 13.

引用本文的文献

7
A reference-free R-learner for treatment recommendation.一种用于治疗推荐的无参考 R-learner。
Stat Methods Med Res. 2023 Feb;32(2):404-424. doi: 10.1177/09622802221144326. Epub 2022 Dec 20.
9
Learning Optimal Distributionally Robust Individualized Treatment Rules.学习最优分布鲁棒个体化治疗规则。
J Am Stat Assoc. 2021;116(534):659-674. doi: 10.1080/01621459.2020.1796359. Epub 2020 Sep 15.

本文引用的文献

2
Concordance-Assisted Learning for Estimating Optimal Individualized Treatment Regimes.用于估计最佳个体化治疗方案的一致性辅助学习
J R Stat Soc Series B Stat Methodol. 2017 Nov;79(5):1565-1582. doi: 10.1111/rssb.12216. Epub 2016 Oct 31.
4
Residual Weighted Learning for Estimating Individualized Treatment Rules.用于估计个体化治疗规则的残差加权学习
J Am Stat Assoc. 2017;112(517):169-187. doi: 10.1080/01621459.2015.1093947. Epub 2017 May 3.
8
Tree-based methods for individualized treatment regimes.用于个性化治疗方案的基于树的方法。
Biometrika. 2015;102(3):501-514. doi: 10.1093/biomet/asv028. Epub 2015 Jul 15.
9
Multicategory angle-based large-margin classification.基于多类别角度的大间隔分类。
Biometrika. 2014 Sep;101(3):625-640. doi: 10.1093/biomet/asu017. Epub 2014 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验