Emery Brett Addison, Hu Xin, Klütsch Diana, Khanzada Shahrukh, Larsson Ludvig, Dumitru Ionut, Frisén Jonas, Lundeberg Joakim, Kempermann Gerd, Amin Hayder
German Center for Neurodegenerative Diseases (DZNE), Group "Biohybrid Neuroelectronics", Tatzberg 41, 01307, Dresden, Germany.
Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Tomtebodavägen 23, 17165, Stockholm, Sweden.
Adv Sci (Weinh). 2025 May;12(20):e2412373. doi: 10.1002/advs.202412373. Epub 2025 Apr 30.
Concepts of brain function imply congruence and mutual causal influence between molecular events and neuronal activity. Decoding entangled information from concurrent molecular and electrophysiological network events demands innovative methodology bridging scales and modalities. The MEA-seqX platform, integrating high-density microelectrode arrays, spatial transcriptomics, optical imaging, and advanced computational strategies, enables the simultaneous recording and analysis of molecular and electrical network activities at mesoscale spatial resolution. Applied to a mouse hippocampal model of experience-dependent plasticity, MEA-seqX unveils massively enhanced nested dynamics between transcription and function. Graph-theoretic analysis reveals an increase in densely connected bimodal hubs, marking the first observation of coordinated hippocampal circuitry dynamics at molecular and functional levels. This platform also identifies different cell types based on their distinct bimodal profiles. Machine-learning algorithms accurately predict network-wide electrophysiological activity features from spatial gene expression, demonstrating a previously inaccessible convergence across modalities, time, and scales.
脑功能的概念意味着分子事件与神经元活动之间存在一致性和相互因果影响。从同时发生的分子和电生理网络事件中解码纠缠信息需要创新方法来跨越尺度和模式。MEA-seqX平台集成了高密度微电极阵列、空间转录组学、光学成像和先进的计算策略,能够在中尺度空间分辨率下同时记录和分析分子和电网络活动。应用于依赖经验可塑性的小鼠海马模型时,MEA-seqX揭示了转录与功能之间大量增强的嵌套动态。图论分析显示紧密连接的双峰枢纽增加,这标志着首次在分子和功能水平观察到协调的海马回路动态。该平台还根据不同的双峰特征识别不同的细胞类型。机器学习算法能够根据空间基因表达准确预测全网络的电生理活动特征,展示了此前无法实现的跨模式、时间和尺度的融合。