Biohybrid Neuroelectronics Laboratory, German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.
Proliferation and Differentiation of Neural Stem Cells, Center for Regenerative Therapies TU Dresden (CRTD), Dresden, Germany.
Biosens Bioelectron. 2022 Feb 15;198:113834. doi: 10.1016/j.bios.2021.113834. Epub 2021 Nov 24.
Large-scale multi-site biosensors are essential to probe the olfactory bulb (OB) circuitry for understanding the spatiotemporal dynamics of simultaneous discharge patterns. Current ex-vivo biosensing techniques are limited to recording a small set of neurons and cannot provide an adequate resolution, which hinders revealing the fast dynamic underlying the information coding mechanisms in the OB circuit. Here, we demonstrate a novel biohybrid OB-CMOS biosensing platform to decipher the cross-scale dynamics of the OB electrogenesis and quantify the distinct neuronal coding properties. The approach with 4096-microelectrodes offers a non-invasive, label-free, bioelectrical imaging to decode simultaneous firing patterns from thousands of connected neuronal ensembles in acute OB slices. The platform can measure spontaneous and drug-induced extracellular field potential activity with substantially improved spatiotemporal resolution over conventional OB-based biosensors. Also, we employ our OB-CMOS recordings to perform multidimensional analysis to instantiate specific neurophysiological metrics underlying the olfactory spatiotemporal coding that emerged from the OB interconnected layers. Our results delineate the computational implications of large-scale activity patterns in functional olfactory processing. The systematic interplay of the experimental CMOS-base platform architecture and the high-content characterization of the olfactory circuit with various computational analyses endow significant functional interrogations of the OB information processing, high-spatiotemporal connectivity mapping, and global circuit dynamics. Thus, our study can inspire the design of advanced biomimetic olfactory-based biosensors and neuromorphic approaches for diagnostic biomarkers and drug discovery applications.
大规模多站点生物传感器对于探测嗅球(OB)电路以理解同时放电模式的时空动力学至关重要。当前的离体生物传感技术仅限于记录一小部分神经元,并且无法提供足够的分辨率,这阻碍了揭示 OB 电路中信息编码机制背后的快速动态。在这里,我们展示了一种新颖的生物混合 OB-CMOS 生物传感平台,用于破译 OB 电发生的跨尺度动力学并量化独特的神经元编码特性。该方法采用 4096 个微电极,提供了一种非侵入性、无标记的生物电成像,可以从急性 OB 切片中数千个连接的神经元集合中解码同时的发射模式。该平台可以测量自发和药物诱导的细胞外场电位活动,与传统的基于 OB 的生物传感器相比,具有大大提高的时空分辨率。此外,我们还利用我们的 OB-CMOS 记录进行多维分析,以实例化从 OB 相互连接的层中出现的嗅觉时空编码的特定神经生理度量。我们的结果描绘了功能嗅觉处理中大尺度活动模式的计算意义。实验性 CMOS 基底平台架构的系统相互作用以及各种计算分析的高含量特征化对 OB 信息处理、高时空连通性映射和全局电路动力学进行了重要的功能询问。因此,我们的研究可以为先进的仿生嗅觉生物传感器和神经形态方法的设计提供启示,用于诊断生物标志物和药物发现应用。