Suppr超能文献

去噪:通过基于高密度CMOS的生物传感器在多模态神经观测中实现动态增强和噪声抑制

DENOISING: Dynamic enhancement and noise overcoming in multimodal neural observations via high-density CMOS-based biosensors.

作者信息

Hu Xin, Emery Brett Addison, Khanzada Shahrukh, Amin Hayder

机构信息

Group of Biohybrid Neuroelectronics (BIONICS), German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.

TU Dresden, Faculty of Medicine Carl Gustav Carus, Dresden, Germany.

出版信息

Front Bioeng Biotechnol. 2024 Sep 4;12:1390108. doi: 10.3389/fbioe.2024.1390108. eCollection 2024.

Abstract

Large-scale multimodal neural recordings on high-density biosensing microelectrode arrays (HD-MEAs) offer unprecedented insights into the dynamic interactions and connectivity across various brain networks. However, the fidelity of these recordings is frequently compromised by pervasive noise, which obscures meaningful neural information and complicates data analysis. To address this challenge, we introduce DENOISING, a versatile data-derived computational engine engineered to adjust thresholds adaptively based on large-scale extracellular signal characteristics and noise levels. This facilitates the separation of signal and noise components without reliance on specific data transformations. Uniquely capable of handling a diverse array of noise types (electrical, mechanical, and environmental) and multidimensional neural signals, including stationary and non-stationary oscillatory local field potential (LFP) and spiking activity, DENOISING presents an adaptable solution applicable across different recording modalities and brain networks. Applying DENOISING to large-scale neural recordings from mice hippocampal and olfactory bulb networks yielded enhanced signal-to-noise ratio (SNR) of LFP and spike firing patterns compared to those computed from raw data. Comparative analysis with existing state-of-the-art denoising methods, employing SNR and root mean square noise (RMS), underscores DENOISING's performance in improving data quality and reliability. Through experimental and computational approaches, we validate that DENOISING improves signal clarity and data interpretation by effectively mitigating independent noise in spatiotemporally structured multimodal datasets, thus unlocking new dimensions in understanding neural connectivity and functional dynamics.

摘要

在高密度生物传感微电极阵列(HD-MEAs)上进行的大规模多模态神经记录,为深入了解不同脑网络之间的动态相互作用和连接性提供了前所未有的视角。然而,这些记录的保真度常常受到普遍存在的噪声的影响,噪声掩盖了有意义的神经信息,使数据分析变得复杂。为应对这一挑战,我们引入了DENOISING,这是一种通用的基于数据的计算引擎,旨在根据大规模细胞外信号特征和噪声水平自适应地调整阈值。这有助于在不依赖特定数据变换的情况下分离信号和噪声成分。DENOISING独特地能够处理各种噪声类型(电噪声、机械噪声和环境噪声)以及多维神经信号,包括平稳和非平稳振荡局部场电位(LFP)以及尖峰活动,它提供了一种适用于不同记录模式和脑网络的自适应解决方案。将DENOISING应用于小鼠海马体和嗅球网络的大规模神经记录,与从原始数据计算得到的结果相比,LFP和尖峰放电模式的信噪比(SNR)得到了提高。使用SNR和均方根噪声(RMS)与现有的最先进去噪方法进行比较分析,突出了DENOISING在提高数据质量和可靠性方面的性能。通过实验和计算方法,我们验证了DENOISING通过有效减轻时空结构多模态数据集中的独立噪声来提高信号清晰度和数据解释能力,从而为理解神经连接性和功能动力学开辟了新的维度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ecf/11411565/2b8f57546eb8/fbioe-12-1390108-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验