Suppr超能文献

相似文献

2
Current Radiology workforce perspective on the integration of artificial intelligence in clinical practice: A systematic review.
J Med Imaging Radiat Sci. 2025 Jan;56(1):101769. doi: 10.1016/j.jmir.2024.101769. Epub 2024 Oct 21.
3
Advancements in AI based healthcare techniques with FOCUS ON diagnostic techniques.
Comput Biol Med. 2024 Sep;179:108917. doi: 10.1016/j.compbiomed.2024.108917. Epub 2024 Jul 25.
7
Descriptive overview of AI applications in x-ray imaging and radiotherapy.
J Radiol Prot. 2024 Dec 27;44(4). doi: 10.1088/1361-6498/ad9f71.
9
Artificial Intelligence user interface preferences in radiology: A scoping review.
J Med Imaging Radiat Sci. 2025 May;56(3):101866. doi: 10.1016/j.jmir.2025.101866. Epub 2025 Feb 27.
10
Artificial intelligence for diagnosing exudative age-related macular degeneration.
Cochrane Database Syst Rev. 2024 Oct 17;10(10):CD015522. doi: 10.1002/14651858.CD015522.pub2.

引用本文的文献

1
Pitfalls and Best Practices in Evaluation of AI Algorithmic Biases in Radiology.
Radiology. 2025 May;315(2):e241674. doi: 10.1148/radiol.241674.
3
The Evolution of Radiology Image Annotation in the Era of Large Language Models.
Radiol Artif Intell. 2025 Jul;7(4):e240631. doi: 10.1148/ryai.240631.

本文引用的文献

1
Metrics reloaded: recommendations for image analysis validation.
Nat Methods. 2024 Feb;21(2):195-212. doi: 10.1038/s41592-023-02151-z. Epub 2024 Feb 12.
2
Anonymizing Radiographs Using an Object Detection Deep Learning Algorithm.
Radiol Artif Intell. 2023 Sep 13;5(6):e230085. doi: 10.1148/ryai.230085. eCollection 2023 Nov.
3
Non-task expert physicians benefit from correct explainable AI advice when reviewing X-rays.
Sci Rep. 2023 Jan 25;13(1):1383. doi: 10.1038/s41598-023-28633-w.
4
Magician's Corner: 9. Performance Metrics for Machine Learning Models.
Radiol Artif Intell. 2021 May 12;3(3):e200126. doi: 10.1148/ryai.2021200126. eCollection 2021 May.
5
The RSNA Pulmonary Embolism CT Dataset.
Radiol Artif Intell. 2021 Jan 20;3(2):e200254. doi: 10.1148/ryai.2021200254. eCollection 2021 Mar.
6
Construction of a Machine Learning Dataset through Collaboration: The RSNA 2019 Brain CT Hemorrhage Challenge.
Radiol Artif Intell. 2020 Apr 29;2(3):e190211. doi: 10.1148/ryai.2020190211. eCollection 2020 May.
7
Augmenting the National Institutes of Health Chest Radiograph Dataset with Expert Annotations of Possible Pneumonia.
Radiol Artif Intell. 2019 Jan 30;1(1):e180041. doi: 10.1148/ryai.2019180041. eCollection 2019 Jan.
8
Challenges Related to Artificial Intelligence Research in Medical Imaging and the Importance of Image Analysis Competitions.
Radiol Artif Intell. 2019 Jan 30;1(1):e180031. doi: 10.1148/ryai.2019180031. eCollection 2019 Jan.
9
Preparing Medical Imaging Data for Machine Learning.
Radiology. 2020 Apr;295(1):4-15. doi: 10.1148/radiol.2020192224. Epub 2020 Feb 18.
10
The RSNA Pediatric Bone Age Machine Learning Challenge.
Radiology. 2019 Feb;290(2):498-503. doi: 10.1148/radiol.2018180736. Epub 2018 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验