Suppr超能文献

碳化硅与铜的直接晶圆键合

Direct Wafer Bonding of Silicon Carbide and Copper.

作者信息

Huang Szuyu, Liu Fachen, Mao Ruilin, Guo Qi, Li Sheng, Sun Fangyuan, Wang Zhenzhong, Gao Peng

机构信息

International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.

Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China.

出版信息

ACS Appl Mater Interfaces. 2025 May 14;17(19):28799-28807. doi: 10.1021/acsami.5c00949. Epub 2025 Apr 30.

Abstract

Silicon carbide (SiC), known for its wide bandgap and exceptional resistance to high temperatures and pressures, is widely used in high-power devices that operate efficiently at temperatures exceeding 400 °C. Especially when combined with Direct Bonded Copper (DBC) substrates, these devices exhibit excellent heat dissipation capabilities. However, during packaging, conventional soldering materials start to degrade around 200 °C due to oxidation or aging, leading to diminished reliability and shorter device lifespans. In this study, we demonstrate the fabrication of high-quality SiC/Cu systems using the wafer bonding approach, achieving an interface bonding strength of ∼57 MPa. Atomically resolved electron microscopy and spectroscopy characterizations reveal that the bonding is robust across all Cu crystal orientations and free of oxide layers. Furthermore, owing to the excellent interface quality, the interfacial thermal conductance, as measured by time-domain thermoreflectance (TDTR) measurements, reaches an impressively high value of ∼0.128 GW/mK, which is further corroborated by thermal simulation calculations. Subsequent nanoscale phonon measurements and analyses disclose that interface phonons play a crucial role in endowing the SiC/Cu bonding system with excellent thermal performance. This study demonstrates that the direct wafer bonding strategy is an effective approach for fabricating high-quality SiC/Cu heterostructures with robust mechanical and thermal properties.

摘要

碳化硅(SiC)以其宽带隙以及对高温高压的卓越耐受性而闻名,被广泛应用于在超过400°C的温度下高效运行的高功率器件中。特别是当与直接键合铜(DBC)基板结合使用时,这些器件展现出出色的散热能力。然而,在封装过程中,传统的焊接材料由于氧化或老化,在大约200°C时就开始降解,导致可靠性降低和器件寿命缩短。在本研究中,我们展示了使用晶圆键合方法制造高质量的SiC/Cu系统,实现了约57 MPa的界面结合强度。原子分辨电子显微镜和光谱表征表明,在所有铜晶体取向上键合都很牢固且没有氧化层。此外,由于优异的界面质量,通过时域热反射(TDTR)测量得到的界面热导率达到了令人印象深刻的约0.128 GW/mK的高值,热模拟计算进一步证实了这一点。随后的纳米级声子测量和分析表明,界面声子在赋予SiC/Cu键合系统优异热性能方面起着关键作用。本研究表明,直接晶圆键合策略是制造具有强大机械和热性能的高质量SiC/Cu异质结构的有效方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验