Sun Jiajia, Xiong Xiewei, Lai Wei, Wu Zhongdong, Wang Heming, Yang Lei, Xue Niannian, Yao Qunyan, Song Guangqi, Zhao Yicheng, Li Li, Wang Fei, Fan Chunhai, Pei Hao
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai 200241, China.
Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, Hubei 442002, China.
Sci Adv. 2025 May 2;11(18):eadv6512. doi: 10.1126/sciadv.adv6512. Epub 2025 Apr 30.
Synthetic nucleic acid-based computing has demonstrated complex computational capabilities in vitro. However, translating these circuits into living cells remains challenging because of instability and cellular interference. We introduce an allosteric strand exchange (ASE) strategy for complex intracellular computing. Leveraging conformational cooperativity to regulate strand exchange, ASE offers a modular platform for designing intracellular circuits with flexible programmability. We engineer a scalable circuit architecture based on ASE that can execute AND and OR logic and scale to an eight-input expression. We demonstrate ASE-based circuits can detect messenger RNAs with high specificity in mammalian cells via AND logic computation. The capacity of ASE-based circuits to accept messenger RNAs as inputs enables integration of endogenous cellular information for efficient multi-input information processing, demonstrated by a multi-input molecular classifier monitoring key cell reprogramming events. Reprogramming ASE-based circuit to interface with CRISPR-Cas9 enables programmable control of Cas9-targeting activity for gene editing, highlighting their potential for advancing intracellular biocomputation.
基于合成核酸的计算已在体外展现出复杂的计算能力。然而,由于不稳定性和细胞干扰,将这些电路转化到活细胞中仍然具有挑战性。我们引入了一种用于复杂细胞内计算的变构链交换(ASE)策略。利用构象协同作用来调节链交换,ASE为设计具有灵活可编程性的细胞内电路提供了一个模块化平台。我们设计了一种基于ASE的可扩展电路架构,该架构可以执行与逻辑和或逻辑,并扩展到八输入表达。我们证明基于ASE的电路可以通过与逻辑计算在哺乳动物细胞中以高特异性检测信使RNA。基于ASE的电路接受信使RNA作为输入的能力能够整合内源性细胞信息以进行高效的多输入信息处理,这在一个监测关键细胞重编程事件的多输入分子分类器中得到了证明。将基于ASE的电路重新编程以与CRISPR-Cas9接口,能够对用于基因编辑的Cas9靶向活性进行可编程控制,突出了它们在推进细胞内生物计算方面的潜力。