Suppr超能文献

用于多功能植物生长监测的光稳定、超可拉伸可穿戴应变传感器。

Light-Stable, Ultrastretchable Wearable Strain Sensors for Versatile Plant Growth Monitoring.

作者信息

Wang Siqing, Baek Janice M, Lau Allison P, Quebedeaux Jennifer C, Leakey Andrew D B, Diao Ying

机构信息

Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States.

Beckman Institute for Advanced Science and Technology, 405 N. Mathews Ave. M/C 251, Urbana, Illinois 61801, United States.

出版信息

ACS Sens. 2025 May 23;10(5):3390-3401. doi: 10.1021/acssensors.4c03104. Epub 2025 Apr 30.

Abstract

Wearable electronics have been applied to plants for various applications, including microclimate detection, health diagnosis, and growth rate measurement. However, previously reported plant growth strain sensors have limitations in the strain sensing range, optical transparency, and uncertain stability and reproducibility. Our recent work reported a transparent, conjugated polymer-based strain sensor that achieved above 400% operating strain in measurements of growth in a grass. In this work, we develop second-generation plant strain sensors to broaden their application scope in plant growth monitoring by (1) imparting photostability through device engineering and (2) boosting stretchability through direct ink writing. We first fabricate a strain sensor using room-temperature-cured Au-C-Al electrodes, which drastically improve sensor stability under direct light illumination. The sensors are successfully applied to leaves and stems of tomatoes as well as cotyledons and fruits of cucumbers to track the elongation or radial growth rate in day/night cycles. Notably, the cucumber cotyledon is so far the youngest plant organ (3 days after germination) on which a strain sensor has been used for growth monitoring. Moreover, we attain a significantly improved strain sensing range by patterning and encapsulating strain sensors using direct ink writing. An "elastic rope" model is proposed, which revealed that the shape and contour length of patterned sensors jointly determine the strain sensing range along with the intrinsic stretchability of the material. The most stretchable long-horseshoe pattern reaches a maximum apparent operating nominal strain of 1000% tested on grass leaves, a new record in strain sensors applied to plant growth monitoring.

摘要

可穿戴电子产品已应用于植物,用于各种用途,包括微气候检测、健康诊断和生长速率测量。然而,先前报道的植物生长应变传感器在应变传感范围、光学透明度以及稳定性和可重复性方面存在局限性。我们最近的工作报道了一种基于共轭聚合物的透明应变传感器,在测量草的生长时,其工作应变超过400%。在这项工作中,我们开发了第二代植物应变传感器,以扩大其在植物生长监测中的应用范围,方法是:(1)通过器件工程赋予光稳定性;(2)通过直接喷墨打印提高拉伸性。我们首先使用室温固化的金-碳-铝电极制造了一种应变传感器,这大大提高了传感器在直射光照射下的稳定性。这些传感器成功应用于番茄的叶子和茎以及黄瓜的子叶和果实,以跟踪昼夜循环中的伸长或径向生长速率。值得注意的是,黄瓜子叶是迄今为止使用应变传感器进行生长监测的最幼嫩的植物器官(发芽后3天)。此外,我们通过直接喷墨打印对应变传感器进行图案化和封装,显著提高了应变传感范围。我们提出了一个“弹性绳”模型,该模型表明,图案化传感器的形状和轮廓长度与材料的固有拉伸性共同决定了应变传感范围。在草叶上测试时,最具拉伸性的长马蹄形图案达到了1000%的最大表观工作标称应变,这是应用于植物生长监测的应变传感器的新记录。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验