Suppr超能文献

MMRNet:用于从组织病理学图像预测子宫内膜癌错配修复缺陷的集成深度学习模型。

MMRNet: Ensemble deep learning models for predicting mismatch repair deficiency in endometrial cancer from histopathological images.

作者信息

Liu Li-Li, Jing Bing-Zhong, Liu Xuan, Li Rong-Gang, Wan Zhao, Zhang Jiang-Yu, Ouyang Xiao-Ming, Kong Qing-Nuan, Kang Xiao-Ling, Wang Dong-Dong, Chen Hao-Hua, Zhao Zi-Han, Liang Hao-Yu, Huang Ma-Yan, Zheng Cheng-You, Yang Xia, Zheng Xue-Yi, Zhang Xin-Ke, Wei Li-Jun, Cao Chao, Gao Hong-Yi, Luo Rong-Zhen, Cai Mu-Yan

机构信息

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China; Department of Information, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.

出版信息

Cell Rep Med. 2025 May 20;6(5):102099. doi: 10.1016/j.xcrm.2025.102099. Epub 2025 Apr 29.

Abstract

Combining molecular classification with clinicopathologic methods improves risk assessment and chooses therapies for endometrial cancer (EC). Detecting mismatch repair (MMR) deficiencies in EC is crucial for screening Lynch syndrome and identifying immunotherapy candidates. An affordable and accessible tool is urgently needed to determine MMR status in EC patients. We introduce MMRNet, a deep convolutional neural network designed to predict MMR-deficient EC from whole-slide images stained with hematoxylin and eosin. MMRNet demonstrates strong performance, achieving an average area under the receiver operating characteristic curve (AUROC) of 0.897, with a sensitivity of 0.628 and a specificity of 0.949 in internal cross-validation. External validation using three additional datasets results in AUROCs of 0.790, 0.807, and 0.863. Employing a human-machine fusion approach notably improves diagnostic accuracy. MMRNet presents an effective method for identifying EC cases for confirmatory MMR testing and may assist in selecting candidates for immunotherapy.

摘要

将分子分类与临床病理方法相结合可改善子宫内膜癌(EC)的风险评估并选择治疗方案。检测EC中的错配修复(MMR)缺陷对于筛查林奇综合征和识别免疫治疗候选者至关重要。迫切需要一种经济实惠且易于使用的工具来确定EC患者的MMR状态。我们引入了MMRNet,这是一种深度卷积神经网络,旨在从苏木精和伊红染色的全切片图像中预测MMR缺陷型EC。MMRNet表现出强大的性能,在内部交叉验证中,受试者操作特征曲线下的平均面积(AUROC)达到0.897,灵敏度为0.628,特异性为0.949。使用另外三个数据集进行外部验证,AUROC分别为0.790、0.807和0.863。采用人机融合方法可显著提高诊断准确性。MMRNet为识别需要进行MMR确认检测的EC病例提供了一种有效方法,并可能有助于选择免疫治疗候选者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5be1/12147852/e686fc1c3ef5/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验