Tanevski Jovan, Vulliard Loan, Ibarra-Arellano Miguel A, Schapiro Denis, Hartmann Felix J, Saez-Rodriguez Julio
Institute for Computational Biomedicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany.
Translational Spatial Profiling Center, Heidelberg University Hospital, Heidelberg, Germany.
Nat Commun. 2025 Apr 30;16(1):4071. doi: 10.1038/s41467-025-59448-0.
Spatial omics data provide rich molecular and structural information on tissues. Their analysis provides insights into local heterogeneity of tissues and holds promise to improve patient stratification by associating clinical observations with refined tissue representations. We introduce Kasumi, a method for identifying spatially localized neighborhood patterns of intra- and intercellular relationships that are persistent across samples and conditions. The tissue representation based on these patterns can facilitate translational tasks, as we show for stratification of cancer patients for disease progression and response to treatment using data from different experimental platforms. On these tasks, Kasumi outperforms related approaches and offers explanations of spatial coordination and relationships at the cell-type or marker level. We show that persistent patterns comprise regions of different sizes, and that non-abundant, localized relationships in the tissue are strongly associated with unfavorable outcomes.
空间组学数据提供了关于组织的丰富分子和结构信息。对其进行分析有助于深入了解组织的局部异质性,并有望通过将临床观察结果与精细的组织表征相关联来改善患者分层。我们介绍了Kasumi,这是一种用于识别细胞内和细胞间关系的空间局部邻域模式的方法,这些模式在不同样本和条件下具有一致性。基于这些模式的组织表征可以促进转化任务,正如我们使用来自不同实验平台的数据对癌症患者进行疾病进展和治疗反应分层时所展示的那样。在这些任务中,Kasumi优于相关方法,并在细胞类型或标记水平上提供了空间协调和关系的解释。我们表明,持续模式包含不同大小的区域,并且组织中不丰富的局部关系与不良结果密切相关。