Rafimanzelat Mohammad Reza
Department of Electrical Engineering, Dolatabad Branch, Islamic Azad University, Isfahan, Iran.
Sci Rep. 2025 Apr 30;15(1):15201. doi: 10.1038/s41598-025-97684-y.
Boolean networks (BNs) are vital modeling tools in systems biology for biomolecular regulatory networks. After a transient phase, BNs converge to attractors that represent distinct cell types or conditions. Therefore, methods to control the long-term behavior of BNs have important implications for biological and genetic applications. In this paper, we propose a method to enforce convergence of a BN to a desired attractor from any initial state through a simple intervention: fixing a specific subset of network variables at definite values. We refer to this method as the global stabilization of a BN to a target attractor. Utilizing the algebraic state space representation of BNs, we introduce novel matrix tools to formulate this intervention method, as well as develop a foundation for analyzing the stabilizability of BNs. We derive necessary and sufficient conditions for the global stabilizability of BNs and utilize these criteria to identify a minimal subset of network variables-termed the global stabilizing kernel-whose regulation ensures that the BN converges to the desired attractor. Finally, we apply our proposed method to determine the stabilizing kernels of several biomolecular regulatory network models and demonstrate how they can be steered to their target attractors, showcasing the applicability of our approach. We also apply our method to identify the stabilizing kernels of 480 randomly generated BNs. Our experiments suggest that, on average, only a relatively small portion (approximately 25%) of the network nodes need to be manipulated for the networks to converge to their primary attractors.
布尔网络(BNs)是系统生物学中用于生物分子调控网络的重要建模工具。经过一个瞬态阶段后,布尔网络会收敛到代表不同细胞类型或状态的吸引子。因此,控制布尔网络长期行为的方法在生物学和遗传学应用中具有重要意义。在本文中,我们提出了一种方法,通过一种简单的干预措施,使布尔网络从任何初始状态收敛到期望的吸引子:将网络变量的特定子集固定为确定值。我们将这种方法称为布尔网络到目标吸引子的全局稳定化。利用布尔网络的代数状态空间表示,我们引入了新颖的矩阵工具来制定这种干预方法,并为分析布尔网络的可稳定化奠定基础。我们推导了布尔网络全局可稳定化的充要条件,并利用这些准则确定网络变量的最小子集——称为全局稳定核——其调控可确保布尔网络收敛到期望的吸引子。最后,我们应用我们提出的方法来确定几个生物分子调控网络模型的稳定核,并展示如何将它们引导到目标吸引子,展示了我们方法的适用性。我们还应用我们的方法来识别480个随机生成的布尔网络的稳定核。我们的实验表明,平均而言,对于网络收敛到其主要吸引子,只需要操纵相对较小比例(约25%)的网络节点。