Selten Martijn, Bernard Clémence, Mukherjee Diptendu, Hamid Fursham, Hanusz-Godoy Alicia, Oozeer Fazal, Zimmer Christoph, Marín Oscar
Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK.
Nature. 2025 Apr 30. doi: 10.1038/s41586-025-08933-z.
Neuronal activity must be regulated in a narrow permissive band for the proper operation of neural networks. Changes in synaptic connectivity and network activity-for example, during learning-might disturb this balance, eliciting compensatory mechanisms to maintain network function. In the neocortex, excitatory pyramidal cells and inhibitory interneurons exhibit robust forms of stabilizing plasticity. However, although neuronal plasticity has been thoroughly studied in pyramidal cells, little is known about how interneurons adapt to persistent changes in their activity. Here we describe a critical cellular process through which cortical parvalbumin-expressing (PV) interneurons adapt to changes in their activity levels. We found that changes in the activity of individual PV interneurons drive bidirectional compensatory adjustments of the number and strength of inhibitory synapses received by these cells, specifically from other PV interneurons. High-throughput profiling of ribosome-associated mRNA revealed that increasing the activity of a PV interneuron leads to upregulation of two genes encoding multiple secreted neuropeptides: Vgf and Scg2. Functional experiments demonstrated that VGF is critically required for the activity-dependent scaling of inhibitory PV synapses onto PV interneurons. Our findings reveal an instructive role for neuropeptide-encoding genes in regulating synaptic connections among PV interneurons in the adult mouse neocortex.
神经元活动必须在一个狭窄的允许范围内进行调节,以确保神经网络的正常运作。突触连接性和网络活动的变化——例如在学习过程中——可能会扰乱这种平衡,从而引发补偿机制以维持网络功能。在新皮层中,兴奋性锥体细胞和抑制性中间神经元表现出强大的稳定可塑性形式。然而,尽管已经对锥体细胞中的神经元可塑性进行了深入研究,但对于中间神经元如何适应其活动的持续变化却知之甚少。在这里,我们描述了一个关键的细胞过程,通过该过程,表达小白蛋白(PV)的皮层中间神经元能够适应其活动水平的变化。我们发现,单个PV中间神经元活动的变化会驱动这些细胞(特别是从其他PV中间神经元)接收的抑制性突触数量和强度的双向补偿性调整。核糖体相关mRNA的高通量分析表明,增加PV中间神经元的活动会导致两个编码多种分泌神经肽的基因上调:Vgf和Scg2。功能实验表明,VGF对于抑制性PV突触到PV中间神经元的活动依赖性缩放至关重要。我们的研究结果揭示了神经肽编码基因在调节成年小鼠新皮层中PV中间神经元之间突触连接方面的指导作用。