Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, GA 30322.
Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23242-23251. doi: 10.1073/pnas.1820836117. Epub 2020 Jun 5.
Brain plasticity is dynamically regulated across the life span, peaking during windows of early life. Typically assessed in the physiological range of milliseconds (real time), these trajectories are also influenced on the longer timescales of developmental time (nurture) and evolutionary time (nature), which shape neural architectures that support plasticity. Properly sequenced critical periods of circuit refinement build up complex cognitive functions, such as language, from more primary modalities. Here, we consider recent progress in the biological basis of critical periods as a unifying rubric for understanding plasticity across multiple timescales. Notably, the maturation of parvalbumin-positive (PV) inhibitory neurons is pivotal. These fast-spiking cells generate gamma oscillations associated with critical period plasticity, are sensitive to circadian gene manipulation, emerge at different rates across brain regions, acquire perineuronal nets with age, and may be influenced by epigenetic factors over generations. These features provide further novel insight into the impact of early adversity and neurodevelopmental risk factors for mental disorders.
大脑的可塑性在整个生命周期中动态调节,在生命早期的窗口期达到高峰。这些轨迹通常在毫秒级的生理范围内进行评估(实时),但也受到发育时间(后天)和进化时间(先天)的更长时间尺度的影响,这些时间尺度塑造了支持可塑性的神经结构。适当的关键期序列细化建立了复杂的认知功能,例如语言,这些功能是由更基本的模式发展而来的。在这里,我们考虑了关键期生物学基础的最新进展,将其作为理解多个时间尺度可塑性的统一准则。值得注意的是,PV 阳性(PV)抑制性神经元的成熟是关键的。这些快速放电细胞产生与关键期可塑性相关的伽马振荡,对生物钟基因操作敏感,在不同的脑区以不同的速度出现,随着年龄的增长获得周围神经网,并可能受到代际表观遗传因素的影响。这些特征为早期逆境和精神障碍的神经发育风险因素的影响提供了进一步的新见解。