Meunier G, Meunier B
J Biol Chem. 1985 Sep 5;260(19):10576-82.
Despite numerous reports on the N-demethylation reactions catalyzed by peroxidases, to our knowledge, O-demethylation reactions with the same enzymes seem to be still a questionable matter. Unexpectedly, a peroxidase system (horseradish peroxidase and hydrogen peroxide) is able to effect the O-demethylation of the cytotoxic agents 9-methoxyellipticine and N2-methyl-9-methoxyellipticinium acetate. The reaction leads directly to the formation of the corresponding quinone-imine derivatives with the concomitant formation of one molecule of methanol per molecule of methoxy compound. One hydrogen peroxide molecule is consumed during the process. Experiments in H218O-enriched water clearly indicate that 18O is nearly quantitatively incorporated in the carbonyl group of the generated quinone-imine compound with the concomitant elimination of the methoxy group as methanol. So this peroxidase-catalyzed apparent O-demethylation in fact implies an oxidative demethoxylation step. This enzymatic reaction exhibits normal Michaelis-Menten saturation kinetics. Like the 9-hydroxylated ellipticines, both the 9-methoxylated ellipticines show a good affinity for the peroxidase itself (Km approximately 10 microM) but are slowly transformed to the corresponding quinone-imines. The Vmax values for methoxylated ellipticines are 10(-1)-10(-3) lower than those for hydroxylated compounds. This new route for the in vitro formation of electrophilic derivatives from the cytotoxic 9-methoxyellipticine and N2-methyl-9-methoxyellipticinium might be considered as a novel possible metabolic pathway for these drugs, especially if we bear in mind the "bio-oxidative alkylation" process previously described for at least one of the corresponding hydroxylated ellipticine derivatives (see Bernadou, J., Meunier, B., Meunier, G., Auclair, C., and Paoletti, C. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 1297-1301; and Monsarrat, B., Maftouh, M., Meunier, G., Dugué, B., Bernadou, J., Armand, J. P., Picard-Fraire, C., Meunier, B., and Paoletti, C. (1983) Biochem. Pharmacol. 32, 3887-3890).
尽管有大量关于过氧化物酶催化N-去甲基化反应的报道,但据我们所知,相同酶催化的O-去甲基化反应似乎仍然存在疑问。出乎意料的是,一种过氧化物酶体系(辣根过氧化物酶和过氧化氢)能够实现细胞毒性药物9-甲氧基玫瑰树碱和N2-甲基-9-甲氧基玫瑰树碱乙酸盐的O-去甲基化反应。该反应直接导致相应醌亚胺衍生物的形成,同时每分子甲氧基化合物伴随生成一分子甲醇。在此过程中消耗一分子过氧化氢。在富含H218O的水中进行的实验清楚地表明,18O几乎定量地掺入生成的醌亚胺化合物的羰基中,同时甲氧基以甲醇形式消除。因此,这种过氧化物酶催化的明显O-去甲基化实际上意味着一个氧化脱甲氧基步骤。这种酶促反应表现出正常的米氏饱和动力学。与9-羟基化玫瑰树碱一样,9-甲氧基化玫瑰树碱对过氧化物酶本身都具有良好的亲和力(Km约为10 microM),但会缓慢转化为相应的醌亚胺。甲氧基化玫瑰树碱的Vmax值比羟基化化合物的Vmax值低10(-1)-10(-3)。从细胞毒性的9-甲氧基玫瑰树碱和N2-甲基-9-甲氧基玫瑰树碱形成亲电衍生物的这种新的体外途径可能被视为这些药物的一种新的可能代谢途径,特别是如果我们记住先前针对至少一种相应的羟基化玫瑰树碱衍生物所描述的“生物氧化烷基化”过程(见Bernadou, J., Meunier, B., Meunier, G., Auclair, C., and Paoletti, C. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 1297-1301; 和Monsarrat, B., Maftouh, M., Meunier, G., Dugué, B., Bernadou, J., Armand, J. P., Picard-Fraire, C., Meunier, B., and Paoletti, C. (1983) Biochem. Pharmacol. 32, 3887-3890)。