Department of Radiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China.
Clin Transl Gastroenterol. 2019 Oct;10(10):e00079. doi: 10.14309/ctg.0000000000000079.
Adverse histopathological status (AHS) decreases outcomes of gastric cancer (GC). With the lack of a single factor with great reliability to preoperatively predict AHS, we developed a computational approach by integrating large-scale imaging factors, especially radiomic features at contrast-enhanced computed tomography, to predict AHS and clinical outcomes of patients with GC.
Five hundred fifty-four patients with GC (370 training and 184 test) undergoing gastrectomy were retrospectively included. Six radiomic scores (R-scores) related to pT stage, pN stage, Lauren & Borrmann (L&B) classification, World Health Organization grade, lymphatic vascular infiltration, and an overall histopathologic score (H-score) were, respectively, built from 7,000+ radiomic features. R-scores and radiographic factors were then integrated into prediction models to assess AHS. The developed AHS-based Cox model was compared with the American Joint Committee on Cancer (AJCC) eighth stage model for predicting survival outcomes.
Radiomics related to tumor gray-level intensity, size, and inhomogeneity were top-ranked features for AHS. R-scores constructed from those features reflected significant difference between AHS-absent and AHS-present groups (P < 0.001). Regression analysis identified 5 independent predictors for pT and pN stages, 2 predictors for Lauren & Borrmann classification, World Health Organization grade, and lymphatic vascular infiltration, and 3 predictors for H-score, respectively. Area under the curve of models using those predictors was training/test 0.93/0.94, 0.85/0.83, 0.63/0.59, 0.66/0.63, 0.71/0.69, and 0.84/0.77, respectively. The AHS-based Cox model produced higher area under the curve than the eighth AJCC staging model for predicting survival outcomes. Furthermore, adding AHS-based scores to the eighth AJCC staging model enabled better net benefits for disease outcome stratification.
The developed computational approach demonstrates good performance for successfully decoding AHS of GC and preoperatively predicting disease clinical outcomes.
不良组织病理学状态(AHS)会降低胃癌(GC)的治疗效果。由于缺乏能够可靠预测 AHS 的单一因素,我们开发了一种计算方法,通过整合大规模成像因素,特别是对比增强计算机断层扫描的放射组学特征,来预测 GC 患者的 AHS 和临床结果。
回顾性纳入 554 例接受胃切除术的 GC 患者(370 例训练和 184 例测试)。分别从 7000 多个放射组学特征中构建了 6 个与 pT 分期、pN 分期、Lauren&Borrmann(L&B)分类、世界卫生组织分级、淋巴管浸润和整体组织病理学评分(H 评分)相关的放射组学评分(R 评分)。然后将 R 评分和影像学因素整合到预测模型中,以评估 AHS。所开发的基于 AHS 的 Cox 模型与美国癌症联合委员会(AJCC)第八版分期模型在预测生存结果方面进行了比较。
与肿瘤灰度强度、大小和不均匀性相关的放射组学特征在 AHS 中排名最高。由这些特征构建的 R 评分反映了 AHS 缺失和 AHS 存在组之间的显著差异(P<0.001)。回归分析分别确定了 pT 和 pN 分期的 5 个独立预测因素、L&B 分类、世界卫生组织分级和淋巴管浸润的 2 个预测因素以及 H 评分的 3 个预测因素。使用这些预测因素的模型的曲线下面积分别为训练/测试 0.93/0.94、0.85/0.83、0.63/0.59、0.66/0.63、0.71/0.69 和 0.84/0.77。基于 AHS 的 Cox 模型在预测生存结果方面产生的曲线下面积高于第八版 AJCC 分期模型。此外,将基于 AHS 的评分添加到第八版 AJCC 分期模型中,能够更好地为疾病结局分层提供净收益。
所开发的计算方法在成功解码 GC 的 AHS 和术前预测疾病临床结果方面表现出良好的性能。