Lee Seika, Kisiel Marta A, Lindberg Pia, Wheelock Åsa M, Olofsson Anna, Eriksson Julia, Bruchfeld Judith, Runold Michael, Wahlström Lars, Malinovschi Andrei, Janson Christer, Wachtler Caroline, Carlsson Axel C
Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
BMC Med. 2025 Apr 30;23(1):251. doi: 10.1186/s12916-025-04050-w.
The aim of our study was to determine whether the application of machine learning could predict PASC by using diagnoses from primary care and prescribed medication 1 year prior to PASC diagnosis.
This population-based case-control study included subjects aged 18-65 years from Sweden. Stochastic gradient boosting was used to develop a predictive model using diagnoses received in primary care, hospitalization due to acute COVID- 19, and prescribed medication. The variables with normalized relative influence (NRI) ≥ 1% showed were considered predictive. Odds ratios of marginal effects (OR) were calculated.
The study included 47,568 PASC cases and controls. More females (n = 5113) than males (n = 2815) were diagnosed with PASC. Key predictive factors identified in both sexes included prior hospitalization due to acute COVID- 19 (NRI 16.1%, OR 18.8 for females; NRI 41.7%, OR 31.6 for males), malaise and fatigue (NRI 14.5%, OR 4.6 for females; NRI 11.5%, OR 7.9 for males), and post-viral and related fatigue syndromes (NRI 10.1%, OR 21.1 for females; NRI 6.4%, OR 28.4 for males).
Machine learning can predict PASC based on previous diagnoses and medications. Use of this AI method could support diagnostics of PASC in primary care and provide insight into PASC etiology.
我们研究的目的是确定机器学习的应用是否可以通过使用初级保健诊断和PASC诊断前1年的处方药来预测PASC。
这项基于人群的病例对照研究纳入了来自瑞典的18至65岁的受试者。使用随机梯度提升法,利用初级保健中获得的诊断、因急性COVID-19住院情况以及处方药来开发预测模型。显示标准化相对影响(NRI)≥1%的变量被视为具有预测性。计算边际效应的优势比(OR)。
该研究纳入了47,568例PASC病例和对照。被诊断为PASC的女性(n = 5113)多于男性(n = 2815)。在两性中确定的关键预测因素包括因急性COVID-19既往住院(女性NRI为16.1%,OR为18.8;男性NRI为41.7%,OR为31.6)、不适和疲劳(女性NRI为14.5%,OR为4.6;男性NRI为11.5%,OR为7.9)以及病毒感染后及相关疲劳综合征(女性NRI为10.1%,OR为21.1;男性NRI为6.4%,OR为28.4)。
机器学习可以根据既往诊断和用药情况预测PASC。使用这种人工智能方法可以支持初级保健中PASC的诊断,并深入了解PASC的病因。