Suppr超能文献

一种被忽视的环化酶在吲哚二萜生物合成中起核心作用。

An overlooked cyclase plays a central role in the biosynthesis of indole diterpenes.

作者信息

Cameron Rosannah C, Berry Daniel, Richardson Alistair T, Stevenson Luke J, Lukito Yonathan, Styles Kelly A, Nipper Natasha S L, McLellan Rose M, Parker Emily J

机构信息

Ferrier Research Institute, Victoria University of Wellington, Maurice Wilkins Centre for Molecular Biodiscovery Wellington 6012 New Zealand

出版信息

Chem Sci. 2025 Apr 25;16(21):9441-9446. doi: 10.1039/d5sc02009c. eCollection 2025 May 28.

Abstract

Indole diterpenes (IDTs) are a large class of highly complex fungal natural products that possess a wide array of intriguing bioactivities. While IDTs are structurally diverse, the first four steps of IDT biosynthesis are highly conserved and result typically in the formation of a tetrahydropyran (THP)-ring containing structure, most commonly paspaline. The biosynthetic genes responsible for these steps are the most extensively studied of all IDT genes and collectively define the core biosynthetic pathway. Here we show that the fourth fundamental step, formation of the THP ring, is catalysed by a terpene cyclase encoded by an overlooked and uncharacterised fifth gene, . All previously delineated biosynthetic routes have incorrectly attributed this step to the terpene cyclase IdtB, leading to imprecise pathway reconstructions and ignoring the fully evolved biosynthetic solution for core IDT generation. Moreover, while IdtA terpene cyclases are found in Eurotiomycetes fungi, in Sordariomycetes fungi this step is catalysed by the unrelated protein IdtS, demonstrating that two distinct solutions to this chemistry exist. All biosynthetic gene clusters known to specify production of THP-containing IDTs include an or gene. These findings reset the paradigm for core IDT biosynthesis and support accurate heterologous biosynthesis of these complex natural products.

摘要

吲哚二萜(IDTs)是一大类高度复杂的真菌天然产物,具有广泛的有趣生物活性。虽然IDTs在结构上多种多样,但IDT生物合成的前四个步骤高度保守,通常会形成一个含有四氢吡喃(THP)环的结构,最常见的是巴斯帕灵。负责这些步骤的生物合成基因是所有IDT基因中研究最广泛的,共同定义了核心生物合成途径。在这里,我们表明,第四个基本步骤,即THP环的形成,是由一个被忽视且未表征的第五个基因编码的萜烯环化酶催化的。所有先前描述的生物合成途径都错误地将这一步骤归因于萜烯环化酶IdtB,导致途径重建不准确,并忽略了核心IDT生成的完全进化的生物合成解决方案。此外,虽然在散囊菌纲真菌中发现了IdtA萜烯环化酶,但在粪壳菌纲真菌中,这一步骤是由不相关的蛋白质IdtS催化的,这表明存在两种不同的这种化学反应解决方案。所有已知可指定含THP的IDTs生产的生物合成基因簇都包括一个或基因。这些发现重置了核心IDT生物合成的范式,并支持这些复杂天然产物的准确异源生物合成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a626/12118141/a5af5767dd39/d5sc02009c-f1.jpg

相似文献

1
An overlooked cyclase plays a central role in the biosynthesis of indole diterpenes.
Chem Sci. 2025 Apr 25;16(21):9441-9446. doi: 10.1039/d5sc02009c. eCollection 2025 May 28.
2
Tremorgenic and neurotoxic paspaline-derived indole-diterpenes: biosynthetic diversity, threats and applications.
Appl Microbiol Biotechnol. 2019 Feb;103(4):1599-1616. doi: 10.1007/s00253-018-09594-x. Epub 2019 Jan 6.
3
Biosynthesis of indole diterpenes: a reconstitution approach in a heterologous host.
Nat Prod Rep. 2023 Jan 25;40(1):202-213. doi: 10.1039/d2np00031h.
4
Non-Canonical Type II Terpene Cyclases Deliver Rare Terpenoid Architectures.
J Am Chem Soc. 2025 Apr 23;147(16):13108-13113. doi: 10.1021/jacs.4c18232. Epub 2025 Mar 17.
5
Generation of Alternate Indole Diterpene Architectures in Two Species of .
J Am Chem Soc. 2023 Feb 8;145(5):2754-2758. doi: 10.1021/jacs.2c11170. Epub 2023 Jan 29.
6
7
Aminoacylation of Indole Diterpenes by Cluster-Specific Monomodular NRPS-like Enzymes.
Org Lett. 2022 Apr 1;24(12):2332-2337. doi: 10.1021/acs.orglett.2c00473. Epub 2022 Mar 22.
9
Functional characterization of the idtF and idtP genes in the Claviceps paspali indole diterpene biosynthetic gene cluster.
Folia Microbiol (Praha). 2020 Jun;65(3):605-613. doi: 10.1007/s12223-020-00777-6. Epub 2020 Feb 19.
10
Asymmetric Total Synthesis of Indole Diterpenes Paspalicine, Paspalinine, and Paspalinine-13-ene.
Angew Chem Int Ed Engl. 2022 Jan 17;61(3):e202115384. doi: 10.1002/anie.202115384. Epub 2021 Nov 27.

本文引用的文献

1
Functional Crosstalk between Discrete Indole Terpenoid Gene Clusters in .
Org Lett. 2023 Oct 20;25(41):7470-7475. doi: 10.1021/acs.orglett.3c02412. Epub 2023 Oct 5.
2
Generation of Alternate Indole Diterpene Architectures in Two Species of .
J Am Chem Soc. 2023 Feb 8;145(5):2754-2758. doi: 10.1021/jacs.2c11170. Epub 2023 Jan 29.
3
The chemical structures and biological activities of indole diterpenoids.
Nat Prod Bioprospect. 2023 Jan 3;13(1):3. doi: 10.1007/s13659-022-00368-7.
4
Biosynthesis of indole diterpenes: a reconstitution approach in a heterologous host.
Nat Prod Rep. 2023 Jan 25;40(1):202-213. doi: 10.1039/d2np00031h.
5
Biosynthesis of Nodulisporic Acids: A Multifunctional Monooxygenase Delivers a Complex and Highly Branched Array.
Angew Chem Int Ed Engl. 2022 Dec 5;61(49):e202213364. doi: 10.1002/anie.202213364. Epub 2022 Nov 9.
6
Aminoacylation of Indole Diterpenes by Cluster-Specific Monomodular NRPS-like Enzymes.
Org Lett. 2022 Apr 1;24(12):2332-2337. doi: 10.1021/acs.orglett.2c00473. Epub 2022 Mar 22.
7
Highly accurate protein structure prediction with AlphaFold.
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
8
clinker & clustermap.js: automatic generation of gene cluster comparison figures.
Bioinformatics. 2021 Aug 25;37(16):2473-2475. doi: 10.1093/bioinformatics/btab007.
9
The chemistry and biology of fungal meroterpenoids (2009-2019).
Org Biomol Chem. 2021 Mar 4;19(8):1644-1704. doi: 10.1039/d0ob02162h.
10
Chemistry of fungal meroterpenoid cyclases.
Nat Prod Rep. 2021 Mar 1;38(3):566-585. doi: 10.1039/d0np00056f. Epub 2020 Oct 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验