Suppr超能文献

利用机器学习的进展进行网络的稳健分类和解释。

Leveraging advances in machine learning for the robust classification and interpretation of networks.

作者信息

Appaw Raima Carol, Fountain-Jones Nicholas M, Charleston Michael A

机构信息

Department of Mathematics, University of Tasmania College of Sciences and Engineering, Sandy Bay, Tasmania, Australia.

School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia.

出版信息

R Soc Open Sci. 2025 Apr 30;12(4):240458. doi: 10.1098/rsos.240458. eCollection 2025 Apr.

Abstract

The ability to simulate realistic networks based on empirical data is an important task across scientific disciplines, from epidemiology to computer science. Often, simulation approaches involve selecting a suitable network generative model such as Erdös-Rényi or small-world. However, few tools are available to quantify if a particular generative model is suitable for capturing a given network structure or organization. We utilize advances in interpretable machine learning to classify simulated networks by our generative models based on various network attributes, using both primary features and their interactions. Our study underscores the significance of specific network features and their interactions in distinguishing generative models, comprehending complex network structures and the formation of real-world networks.

摘要

基于经验数据模拟现实网络的能力是从流行病学到计算机科学等各个科学学科的一项重要任务。通常,模拟方法涉及选择合适的网络生成模型,如厄多斯-雷尼模型或小世界模型。然而,用于量化特定生成模型是否适合捕捉给定网络结构或组织的工具却很少。我们利用可解释机器学习的进展,基于各种网络属性,使用主要特征及其相互作用,通过我们的生成模型对模拟网络进行分类。我们的研究强调了特定网络特征及其相互作用在区分生成模型、理解复杂网络结构和现实世界网络形成中的重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验