动态网络的可分离模型

A Separable Model for Dynamic Networks.

作者信息

Krivitsky Pavel N, Handcock Mark S

机构信息

Pennsylvania State University, University Park, USA.

University of California at Los Angeles, Los Angeles, USA.

出版信息

J R Stat Soc Series B Stat Methodol. 2014 Jan 1;76(1):29-46. doi: 10.1111/rssb.12014.

Abstract

Models of dynamic networks - networks that evolve over time - have manifold applications. We develop a discrete-time generative model for social network evolution that inherits the richness and flexibility of the class of exponential-family random graph models. The model - a Separable Temporal ERGM (STERGM) - facilitates separable modeling of the tie duration distributions and the structural dynamics of tie formation. We develop likelihood-based inference for the model, and provide computational algorithms for maximum likelihood estimation. We illustrate the interpretability of the model in analyzing a longitudinal network of friendship ties within a school.

摘要

动态网络模型——随时间演化的网络——具有多种应用。我们开发了一种用于社交网络演化的离散时间生成模型,该模型继承了指数族随机图模型类别的丰富性和灵活性。该模型——可分离时间指数随机图模型(STERGM)——便于对关系持续时间分布和关系形成的结构动态进行可分离建模。我们为该模型开发了基于似然的推断,并提供了最大似然估计的计算算法。我们通过分析一所学校内友谊关系的纵向网络来说明该模型的可解释性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索