使用变分自编码器和生成对抗网络相结合的脑肿瘤分类
Brain Tumor Classification Using a Combination of Variational Autoencoders and Generative Adversarial Networks.
作者信息
Ahmad Bilal, Sun Jun, You Qi, Palade Vasile, Mao Zhongjie
机构信息
School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China.
Centre for Computational Science and Mathematical Modelling, Coventry University, Coventry CV1 5FB, UK.
出版信息
Biomedicines. 2022 Jan 21;10(2):223. doi: 10.3390/biomedicines10020223.
Brain tumors are a pernicious cancer with one of the lowest five-year survival rates. Neurologists often use magnetic resonance imaging (MRI) to diagnose the type of brain tumor. Automated computer-assisted tools can help them speed up the diagnosis process and reduce the burden on the health care systems. Recent advances in deep learning for medical imaging have shown remarkable results, especially in the automatic and instant diagnosis of various cancers. However, we need a large amount of data (images) to train the deep learning models in order to obtain good results. Large public datasets are rare in medicine. This paper proposes a framework based on unsupervised deep generative neural networks to solve this limitation. We combine two generative models in the proposed framework: variational autoencoders (VAEs) and generative adversarial networks (GANs). We swap the encoder-decoder network after initially training it on the training set of available MR images. The output of this swapped network is a noise vector that has information of the image manifold, and the cascaded generative adversarial network samples the input from this informative noise vector instead of random Gaussian noise. The proposed method helps the GAN to avoid mode collapse and generate realistic-looking brain tumor magnetic resonance images. These artificially generated images could solve the limitation of small medical datasets up to a reasonable extent and help the deep learning models perform acceptably. We used the ResNet50 as a classifier, and the artificially generated brain tumor images are used to augment the real and available images during the classifier training. We compared the classification results with several existing studies and state-of-the-art machine learning models. Our proposed methodology noticeably achieved better results. By using brain tumor images generated artificially by our proposed method, the classification average accuracy improved from 72.63% to 96.25%. For the most severe class of brain tumor, glioma, we achieved 0.769, 0.837, 0.833, and 0.80 values for recall, specificity, precision, and F1-score, respectively. The proposed generative model framework could be used to generate medical images in any domain, including PET (positron emission tomography) and MRI scans of various parts of the body, and the results show that it could be a useful clinical tool for medical experts.
脑肿瘤是一种恶性癌症,其五年生存率极低。神经科医生通常使用磁共振成像(MRI)来诊断脑肿瘤的类型。自动化计算机辅助工具可以帮助他们加快诊断过程,并减轻医疗保健系统的负担。医学成像深度学习的最新进展已显示出显著成果,尤其是在各种癌症的自动和即时诊断方面。然而,为了获得良好的结果,我们需要大量数据(图像)来训练深度学习模型。医学领域中大型公共数据集很少见。本文提出了一种基于无监督深度生成神经网络的框架来解决这一局限性。我们在所提出的框架中结合了两种生成模型:变分自编码器(VAE)和生成对抗网络(GAN)。在最初在可用MR图像的训练集上进行训练后,我们交换了编码器 - 解码器网络。这个交换后的网络的输出是一个具有图像流形信息的噪声向量,级联生成对抗网络从这个信息丰富的噪声向量而不是随机高斯噪声中采样输入。所提出的方法有助于GAN避免模式崩溃,并生成逼真的脑肿瘤磁共振图像。这些人工生成的图像可以在合理程度上解决小型医学数据集的局限性,并帮助深度学习模型表现得可以接受。我们使用ResNet50作为分类器,并且在分类器训练期间使用人工生成的脑肿瘤图像来扩充真实且可用的图像。我们将分类结果与几项现有研究和最先进的机器学习模型进行了比较。我们提出的方法明显取得了更好的结果。通过使用我们提出的方法人工生成的脑肿瘤图像,分类平均准确率从72.63%提高到了96.25%。对于最严重的脑肿瘤类型,即胶质瘤,我们分别在召回率、特异性、精确率和F1分数上取得了0.769、0.837、0.833和0.80的值。所提出的生成模型框架可用于生成任何领域的医学图像,包括全身各部位的PET(正电子发射断层扫描)和MRI扫描,结果表明它可能是医学专家有用的临床工具。