Okuyama Kohei, Maeda Kota, Yamauchi Ryosuke, Harada Daichi, Kodama Takayuki
Department of Physical Therapy, School of Health Sciences, Bukkyo University, Kyoto 604-8418, Japan.
Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan.
Brain Sci. 2025 Mar 29;15(4):356. doi: 10.3390/brainsci15040356.
BACKGROUND/OBJECTIVES: Precise stepping control is fundamental to human mobility, and impairments increase fall risk in older adults and individuals with neurological conditions. This study investigated the cortical networks underlying stepping accuracy using mobile brain/body imaging with electroencephalography (EEG)-based exact low-resolution electromagnetic tomography-independent component analysis (eLORETA-ICA) and microstate segmentation analysis (MSA).
Sixteen healthy male participants performed a precision stepping task while wearing a mobile EEG system. Step performance was quantified using error distance, measuring deviation between target and heel contact points. Preprocessed EEG data were analyzed using eLORETA-ICA and MSA, with participants categorized into high- and low-performing groups.
Seven microstate clusters were identified, with the anterior cingulate cortex (ACC) showing the highest microstate probability (21.15%). The high-performing group exhibited amplified theta-band activity in the ACC, enhanced activity in the precuneus and postcentral gyrus, and suppressed mu- and beta-band activity in the paracentral lobules.
Stepping accuracy relies on a distributed neural network, with the ACC playing a central role in performance monitoring. We propose an integrated framework comprising the following systems: error monitoring (ACC), sensorimotor integration (paracentral lobules), and visuospatial processing (precuneus and occipital regions). These findings highlight the importance of neural oscillatory mechanisms in precise motor control and offer insights for rehabilitation strategies and fall prevention programs.
背景/目的:精确的步幅控制是人类移动性的基础,而功能障碍会增加老年人和神经系统疾病患者的跌倒风险。本研究使用基于脑电图(EEG)的精确低分辨率电磁断层扫描独立成分分析(eLORETA - ICA)和微状态分割分析(MSA)的移动脑/体成像技术,研究了步幅准确性背后的皮层网络。
16名健康男性参与者在佩戴移动EEG系统时执行精确步幅任务。使用误差距离量化步幅表现,测量目标点与足跟接触点之间的偏差。对预处理后的EEG数据使用eLORETA - ICA和MSA进行分析,并将参与者分为高表现组和低表现组。
确定了七个微状态簇,前扣带回皮质(ACC)显示出最高的微状态概率(21.15%)。高表现组在ACC中表现出增强的θ波段活动,楔前叶和中央后回活动增强,中央旁小叶的μ波和β波活动受到抑制。
步幅准确性依赖于一个分布式神经网络,ACC在性能监测中起核心作用。我们提出了一个包括以下系统的综合框架:误差监测(ACC)、感觉运动整合(中央旁小叶)和视觉空间处理(楔前叶和枕叶区域)。这些发现突出了神经振荡机制在精确运动控制中的重要性,并为康复策略和跌倒预防计划提供了见解。