Alghamdi Norah S, Rakov Dmitrii, Peng Xiyue, Lee Jaeho, Huang Yongxin, Yang Xingchen, Zhang Shuangbin, Gentle Ian R, Wang Lianzhou, Luo Bin
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
Angew Chem Int Ed Engl. 2025 Jul;64(27):e202502739. doi: 10.1002/anie.202502739. Epub 2025 May 22.
Aqueous zinc-bromine flow batteries (ZBFBs) are among the most appealing technologies for large-scale stationary energy storage due to their scalability, cost-effectiveness, safety and sustainability. However, their long-term durability is challenged by issues like the hydrogen evolution reaction (HER) and dendritic zinc electroplating. Herein, we address these challenges by reshaping the Zn ion solvation structures in zinc bromide (ZnBr) aqueous electrolytes using a robust hydrogen bond acceptor as a cosolvent additive. Our findings highlight the critical role of interactions within the first and second Zn solvation shells in determining electrochemical performance. By selectively incorporating a low volume percentage of organic additive into the second coordination shell of Zn, we achieve effective proton capture, electrolyte pH stabilization during the Zn electroplating, and mitigation of ion transport resistance. This approach prevents the formation of a passivation interphase layer on the electrode surface, which typically occurs with higher additive concentrations, leading to increased interphase resistance and cell polarization. This work opens a new avenue in modulating Zn reactivity and stability through precise solvation structure design, enabling efficient and reversible Zn plating/stripping in aqueous electrolytes with suppressed H evolution. These findings pave the way for the development of commercially viable, high-performance ZBFBs for energy storage applications.
水系锌溴液流电池(ZBFBs)因其可扩展性、成本效益、安全性和可持续性,成为大规模固定储能领域最具吸引力的技术之一。然而,析氢反应(HER)和树枝状锌电镀等问题对其长期耐久性提出了挑战。在此,我们通过使用一种强氢键受体作为共溶剂添加剂来重塑溴化锌(ZnBr)水系电解质中的锌离子溶剂化结构,从而应对这些挑战。我们的研究结果突出了第一和第二锌溶剂化壳层内相互作用在决定电化学性能方面的关键作用。通过选择性地将低体积百分比的有机添加剂纳入锌的第二配位壳层,我们实现了有效的质子捕获、锌电镀过程中电解质pH值的稳定以及离子传输阻力的降低。这种方法可防止在电极表面形成钝化界面层,而在较高添加剂浓度下通常会出现这种情况,从而导致界面电阻增加和电池极化。这项工作通过精确的溶剂化结构设计,为调节锌的反应性和稳定性开辟了一条新途径,能够在抑制析氢的情况下,在水系电解质中实现高效且可逆的锌电镀/剥离。这些研究结果为开发用于储能应用的商业可行的高性能ZBFBs铺平了道路。