Suppr超能文献

通过添加剂工程实现用于坚固锌基液流电池的自适应亲锌-疏水界面

Adaptive Zincophilic-Hydrophobic Interfaces via Additive Engineering for Robust Zinc-Based Flow Batteries.

作者信息

Wang Shengnan, Ma Ninggui, Zhang Pu, Hong Hu, Li Qing, Nian Qingshun, Wang Yiqiao, Wu Zhuoxi, Zhu Jiaxiong, Wang Shixun, Fan Jun, Zhi Chunyi

机构信息

Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China.

Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China.

出版信息

J Am Chem Soc. 2025 Jul 9;147(27):23672-23682. doi: 10.1021/jacs.5c05027. Epub 2025 Jun 28.

Abstract

Zinc-based flow batteries (Zn-FBs) have emerged as promising candidates for large-scale energy storage (ES) systems due to their inherent safety and high energy density. However, dendrite formation and water-induced parasitic reactions at the Zn anode critically compromise long-term operational stability. While aqueous Zn battery additives have been extensively explored, systematic selection criteria for high-areal-capacity Zn-FBs remain absent. Here, we establish zincophilicity and interfacial hydrophobicity as dual descriptors for additive screening. A dimensionless parameter η, defined as the ratio of the adsorption energy on Zn to the binding energy of free water molecules, identifies 1-ethylpyridinium bromide (EPD) as the most optimal pyridinium additive with the highest η value. Mechanistic studies reveal that EPD spontaneously assembles into a dynamic electric-field-responsive interface, which self-adapts to morphological perturbations during electrodeposition and guides Zn flux along equipotential contours, preventing surface roughening. The formed zincophilic-hydrophobic interphase alters interfacial chemistry by displacing reactive water molecules, achieving dual suppression of hydrogen evolution and dendrite propagation. Implementation of this strategy in Zn-Br flow batteries enables ultrastable cycling over 4000 cycles (166 days) at 40 mA cm, delivering a cumulative plating capacity of 80 Ah cm─about 11.4-fold improvement over the baseline system (7.0 Ah cm). This work demonstrates an adaptive interface engineering strategy that directs ion redistribution, advancing the development of reliable electrolytes for sustainable metal-based flow batteries.

摘要

锌基液流电池(Zn-FBs)因其固有的安全性和高能量密度,已成为大规模储能(ES)系统的有前途的候选者。然而,锌阳极上的枝晶形成和水引发的寄生反应严重损害了长期运行稳定性。虽然水性锌电池添加剂已被广泛研究,但对于高面积容量的Zn-FBs仍缺乏系统的选择标准。在此,我们将亲锌性和界面疏水性确立为添加剂筛选的双重描述符。一个无量纲参数η,定义为锌上的吸附能与自由水分子结合能之比,确定1-乙基吡啶溴化物(EPD)为具有最高η值的最佳吡啶添加剂。机理研究表明,EPD自发组装成一个动态电场响应界面,该界面在电沉积过程中能自适应形态扰动,并沿等势线引导锌通量,防止表面粗糙化。形成的亲锌-疏水中间相通过取代活性水分子改变界面化学性质,实现对析氢和枝晶生长的双重抑制。在Zn-Br液流电池中实施该策略,可在40 mA cm下实现超过4000次循环(166天)的超稳定循环,累积镀覆容量为80 Ah cm,比基线系统(7.0 Ah cm)提高约11.4倍。这项工作展示了一种指导离子重新分布的自适应界面工程策略,推动了用于可持续金属基液流电池的可靠电解质的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验