Suppr超能文献

基于注意力机制的 UNet 模型在 BUSI 数据集上的乳腺癌分割

Attention based UNet model for breast cancer segmentation using BUSI dataset.

机构信息

Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia.

Emerging Technologies Research Lab (ETRL), College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia.

出版信息

Sci Rep. 2024 Sep 28;14(1):22422. doi: 10.1038/s41598-024-72712-5.

Abstract

Breast cancer, a prevalent and life-threatening disease, necessitates early detection for the effective intervention and the improved patient health outcomes. This paper focuses on the critical problem of identifying breast cancer using a model called Attention U-Net. The model is utilized on the Breast Ultrasound Image Dataset (BUSI), comprising 780 breast images. The images are categorized into three distinct groups: 437 cases classified as benign, 210 cases classified as malignant, and 133 cases classified as normal. The proposed model leverages the attention-driven U-Net's encoder blocks to capture hierarchical features effectively. The model comprises four decoder blocks which is a pivotal component in the U-Net architecture, responsible for expanding the encoded feature representation obtained from the encoder block and for reconstructing spatial information. Four attention gates are incorporated strategically to enhance feature localization during decoding, showcasing a sophisticated design that facilitates accurate segmentation of breast tumors in ultrasound images. It displays its efficacy in accurately delineating and segregating tumor borders. The experimental findings demonstrate outstanding performance, achieving an overall accuracy of 0.98, precision of 0.97, recall of 0.90, and a dice score of 0.92. It demonstrates its effectiveness in precisely defining and separating tumor boundaries. This research aims to make automated breast cancer segmentation algorithms by emphasizing the importance of early detection in boosting diagnostic capabilities and enabling prompt and targeted medical interventions.

摘要

乳腺癌是一种常见且危及生命的疾病,需要早期发现,以便进行有效的干预和改善患者的健康结果。本文重点介绍了一种名为 Attention U-Net 的模型,用于识别乳腺癌的关键问题。该模型使用了 Breast Ultrasound Image Dataset (BUSI) 中的 780 张乳腺图像进行训练。这些图像被分为三个不同的类别:437 个良性病例、210 个恶性病例和 133 个正常病例。所提出的模型利用了注意力驱动的 U-Net 的编码器块来有效地捕获分层特征。该模型包含四个解码器块,这是 U-Net 架构中的一个关键组件,负责扩展从编码器块获得的编码特征表示,并重建空间信息。四个注意力门被战略性地纳入,以在解码过程中增强特征定位,展示了一种复杂的设计,有助于在超声图像中准确分割乳腺肿瘤。它在准确描绘和区分肿瘤边界方面表现出色。实验结果表明,该模型具有出色的性能,整体准确率为 0.98,精确率为 0.97,召回率为 0.90,骰子系数为 0.92。它在准确定义和分离肿瘤边界方面表现出色。本研究旨在通过强调早期检测在提高诊断能力和实现及时、有针对性的医疗干预方面的重要性,开发自动化乳腺癌分割算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f2/11439015/6ba85e171908/41598_2024_72712_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验