Suppr超能文献

深度学习方法预测癌症患者化疗期间身心衰退情况

Deep Learning Approaches to Forecast Physical and Mental Deterioration During Chemotherapy in Patients with Cancer.

作者信息

Finkelstein Joseph, Smiley Aref, Echeverria Christina, Mooney Kathi

机构信息

Department of Biomedical Informatics, The University of Utah, Salt Lake City, UT 84108, USA.

College of Nursing, The University of Utah, Salt Lake City, UT 84108, USA.

出版信息

Diagnostics (Basel). 2025 Apr 9;15(8):956. doi: 10.3390/diagnostics15080956.

Abstract

: Predicting symptom escalation during chemotherapy is crucial for timely interventions and improved patient outcomes. This study employs deep learning models to predict the deterioration of 12 self-reported symptoms, categorized into physical (e.g., nausea, fatigue, pain) and mental (e.g., feeling blue, trouble thinking) groups. : The analytical dataset comprises daily self-reported symptom logs from individuals undergoing chemotherapy. To address class imbalance-where 84% of cases showed no escalation-symptoms were grouped into intervals of 3 to 7 days. Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) models were trained on 80% of the data and evaluated on the remaining 20%. : Results showed that 3-day intervals yielded the best predictive performance. CNNs excelled in predicting physical symptoms, achieving 79.2% accuracy, 84.1% precision, 78.8% recall, and an F1 score of 81.4%. For mental symptoms, GRU outperformed other models, with an accuracy of 77.2%, precision of 71.6%, recall of 62.2%, and an F1 score of 66.6%. Performance declined for longer intervals due to reduced temporal resolution and fewer training samples, though CNNs and GRU remained relatively stable. : The findings emphasize the advantage of categorizing symptoms for more tailored predictions and demonstrate the potential of deep learning in forecasting symptom escalation. Integrating these predictive models into clinical workflows could facilitate proactive symptom management, allowing timely interventions and enhanced patient care during chemotherapy.

摘要

预测化疗期间症状的加重对于及时干预和改善患者预后至关重要。本研究采用深度学习模型来预测12种自我报告症状的恶化情况,这些症状分为身体症状(如恶心、疲劳、疼痛)和精神症状(如情绪低落、思维困难)两组。分析数据集包括接受化疗的个体的每日自我报告症状记录。为了解决类别不平衡问题(84%的病例未出现症状加重),症状被分组为3至7天的时间段。卷积神经网络(CNN)、长短期记忆网络(LSTM)和门控循环单元(GRU)模型在80%的数据上进行训练,并在其余20%的数据上进行评估。结果表明,3天的时间段产生了最佳预测性能。CNN在预测身体症状方面表现出色,准确率达到79.2%,精确率达到84.1%,召回率达到78.8%,F1分数为81.4%。对于精神症状,GRU的表现优于其他模型,准确率为77.2%,精确率为71.6%,召回率为62.2%,F1分数为66.6%。由于时间分辨率降低和训练样本减少,较长时间段的性能有所下降,不过CNN和GRU仍然相对稳定。研究结果强调了对症状进行分类以进行更有针对性预测的优势,并证明了深度学习在预测症状加重方面的潜力。将这些预测模型整合到临床工作流程中可以促进主动的症状管理,从而在化疗期间实现及时干预并加强患者护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5b4/12025769/e262b70b2d3b/diagnostics-15-00956-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验