Suppr超能文献

运动皮层中的神经表征与因果模型

Neural Representation and Causal Models in Motor Cortex.

作者信息

Chaisanguanthum Kris S, Shen Helen H, Sabes Philip N

机构信息

Department of Physiology.

Center for Integrative Neuroscience, and.

出版信息

J Neurosci. 2017 Mar 22;37(12):3413-3424. doi: 10.1523/JNEUROSCI.1000-16.2017. Epub 2017 Feb 20.

Abstract

Dorsal premotor (PMd) and primary motor (M1) cortices play a central role in mapping sensation to movement. Many studies of these areas have focused on correlation-based tuning curves relating neural activity to task or movement parameters, but the link between tuning and movement generation is unclear. We recorded motor preparatory activity from populations of neurons in PMd/M1 as macaque monkeys performed a visually guided reaching task and show that tuning curves for sensory inputs (reach target direction) and motor outputs (initial movement direction) are not typically aligned. We then used a simple, causal model to determine the expected relationship between sensory and motor tuning. The model shows that movement variability is minimized when output neurons (those that directly drive movement) have target and movement tuning that are linearly related across targets and cells. In contrast, for neurons that only affect movement via projections to output neurons, the relationship between target and movement tuning is determined by the pattern of projections to output neurons and may even be uncorrelated, as was observed for the PMd/M1 population as a whole. We therefore determined the relationship between target and movement tuning for subpopulations of cells defined by the temporal duration of their spike waveforms, which may distinguish cell types. We found a strong correlation between target and movement tuning for only a subpopulation of neurons with intermediate spike durations (trough-to-peak ∼350 μs after high-pass filtering), suggesting that these cells have the most direct role in driving motor output. This study focuses on how macaque premotor and primary motor cortices transform sensory inputs into motor outputs. We develop empirical and theoretical links between causal models of this transformation and more traditional, correlation-based "tuning curve" analyses. Contrary to common assumptions, we show that sensory and motor tuning curves for premovement preparatory activity do not generally align. Using a simple causal model, we show that tuning-curve alignment is only expected for output neurons that drive movement. Finally, we identify a physiologically defined subpopulation of neurons with strong tuning-curve alignment, suggesting that it contains a high concentration of output cells. This study demonstrates how analysis of movement variability, combined with simple causal models, can uncover the circuit structure of sensorimotor transformations.

摘要

背侧运动前区(PMd)和初级运动皮层(M1)在将感觉映射到运动中起着核心作用。对这些区域的许多研究都集中在基于相关性的调谐曲线上,该曲线将神经活动与任务或运动参数联系起来,但调谐与运动产生之间的联系尚不清楚。当猕猴执行视觉引导的伸手任务时,我们记录了PMd/M1中神经元群体的运动准备活动,并表明感觉输入(伸手目标方向)和运动输出(初始运动方向)的调谐曲线通常不一致。然后,我们使用一个简单的因果模型来确定感觉和运动调谐之间的预期关系。该模型表明,当输出神经元(那些直接驱动运动的神经元)具有在目标和细胞之间线性相关的目标调谐和运动调谐时,运动变异性最小化。相比之下,对于那些仅通过向输出神经元的投射来影响运动的神经元,目标调谐和运动调谐之间的关系由向输出神经元的投射模式决定,甚至可能不相关,就像在整个PMd/M1群体中观察到的那样。因此,我们确定了由其尖峰波形的时间持续时间定义的细胞亚群的目标调谐和运动调谐之间的关系,这可能区分细胞类型。我们发现,只有中间尖峰持续时间(高通滤波后波谷到波峰约350微秒)的神经元亚群的目标调谐和运动调谐之间存在强相关性,这表明这些细胞在驱动运动输出中具有最直接的作用。这项研究关注猕猴运动前区和初级运动皮层如何将感觉输入转化为运动输出。我们在这种转化的因果模型与更传统的基于相关性的“调谐曲线”分析之间建立了实证和理论联系。与常见假设相反,我们表明运动前准备活动的感觉和运动调谐曲线通常不一致。使用一个简单的因果模型,我们表明只有驱动运动的输出神经元才预期有调谐曲线对齐。最后,我们确定了一个具有强调谐曲线对齐的生理学定义的神经元亚群,表明它包含高浓度的输出细胞。这项研究展示了如何通过对运动变异性的分析,结合简单的因果模型,揭示感觉运动转化的电路结构。

相似文献

1
Neural Representation and Causal Models in Motor Cortex.
J Neurosci. 2017 Mar 22;37(12):3413-3424. doi: 10.1523/JNEUROSCI.1000-16.2017. Epub 2017 Feb 20.
2
Preferential representation of instructed target location versus limb trajectory in dorsal premotor area.
J Neurophysiol. 1997 Mar;77(3):1195-212. doi: 10.1152/jn.1997.77.3.1195.
3
Target-, limb-, and context-dependent neural activity in the cingulate and supplementary motor areas of the monkey.
Exp Brain Res. 2004 Oct;158(3):278-88. doi: 10.1007/s00221-004-1895-0. Epub 2004 Jul 29.
4
Eye position effects on the neuronal activity of dorsal premotor cortex in the macaque monkey.
J Neurophysiol. 1998 Sep;80(3):1132-50. doi: 10.1152/jn.1998.80.3.1132.
7
Parieto-frontal coding of reaching: an integrated framework.
Exp Brain Res. 1999 Dec;129(3):325-46. doi: 10.1007/s002210050902.
9
Neural correlates of a spatial sensory-to-motor transformation in primary motor cortex.
J Neurophysiol. 1997 Mar;77(3):1171-94. doi: 10.1152/jn.1997.77.3.1171.

本文引用的文献

1
Comparing offline decoding performance in physiologically defined neuronal classes.
J Neural Eng. 2016 Apr;13(2):026004. doi: 10.1088/1741-2560/13/2/026004. Epub 2016 Jan 29.
2
A neural network that finds a naturalistic solution for the production of muscle activity.
Nat Neurosci. 2015 Jul;18(7):1025-33. doi: 10.1038/nn.4042. Epub 2015 Jun 15.
3
Temporal evolution of both premotor and motor cortical tuning properties reflect changes in limb biomechanics.
J Neurophysiol. 2015 Apr 1;113(7):2812-23. doi: 10.1152/jn.00486.2014. Epub 2015 Feb 11.
4
Coding of movements in the motor cortex.
Curr Opin Neurobiol. 2015 Aug;33:34-9. doi: 10.1016/j.conb.2015.01.012. Epub 2015 Jan 31.
5
Motor variability arises from a slow random walk in neural state.
J Neurosci. 2014 Sep 3;34(36):12071-80. doi: 10.1523/JNEUROSCI.3001-13.2014.
6
Sensory population decoding for visually guided movements.
Neuron. 2013 Jul 10;79(1):167-79. doi: 10.1016/j.neuron.2013.05.026.
7
Cortical control of arm movements: a dynamical systems perspective.
Annu Rev Neurosci. 2013 Jul 8;36:337-59. doi: 10.1146/annurev-neuro-062111-150509. Epub 2013 May 29.
9
Normalization as a canonical neural computation.
Nat Rev Neurosci. 2011 Nov 23;13(1):51-62. doi: 10.1038/nrn3136.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验