Suppr超能文献

多模态可视化和可解释机器学习驱动的标志物实现经导管主动脉瓣置换术后症状性主动脉瓣狭窄和射血分数保留的心力衰竭的早期识别和预后预测:多中心队列研究

Multimodal Visualization and Explainable Machine Learning-Driven Markers Enable Early Identification and Prognosis Prediction for Symptomatic Aortic Stenosis and Heart Failure With Preserved Ejection Fraction After Transcatheter Aortic Valve Replacement: Multicenter Cohort Study.

作者信息

Wang Jun, Zhu Jiajun, Li Hui, Wu Shili, Li Siyang, Yao Zhuoya, Zhu Tongjian, Tang Bi, Tang Shengxing, Liu Jinjun

机构信息

Department of Cardiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China.

Joint Research Center for Regional Diseases of IHM, Bengbu Medical University, Bengbu, China.

出版信息

J Med Internet Res. 2025 May 1;27:e70587. doi: 10.2196/70587.

Abstract

BACKGROUND

Currently, there is a paucity of literature addressing personalized risk stratification using multimodal data in patients with symptomatic aortic stenosis and heart failure with preserved ejection fraction (HFpEF) following transcatheter aortic valve replacement (TAVR).

OBJECTIVE

This study aimed to enhance the performance of risk assessment models in this patient population by developing a predictive model for adverse outcomes using various machine learning (ML) techniques.

METHODS

This multicenter cohort study included 326 patients diagnosed with severe AS and HFpEF who underwent TAVR between January 2017 and December 2023. Patients were allocated to training (n=195) and independent validation (n=131) sets based on hospital affiliation. A dual-phase feature selection process, combining least absolute shrinkage and selection operator logistic regression and the Boruta algorithm, was used to identify relevant variables from the multimodal dataset. A total of 5 ML model-decision trees, K-nearest neighbors, random forest, support vector machine, and extreme gradient boosting were used to construct a visualization and explainable predictive framework to elucidate model decision-making processes.

RESULTS

The primary features identified included age, N-terminal pro-brain natriuretic peptide, fasting blood glucose, triglyceride/high-density lipoprotein cholesterol ratio, triglyceride glucose index, triglyceride glucose-BMI index, atherogenic index of plasma index, and Apolipoprotein B. Among the 5 models, the support vector machine demonstrated the best predictive performance for major adverse cardiovascular and cerebrovascular events in patients with severe AS and HFpEF following TAVR, achieving an area under the curve of 0.756 (95% CI 0.631-0.881) in the independent validation set. The model exhibited good calibration and robust predictive power in both training and validation sets and demonstrated the highest net benefit in decision curve analysis compared to other models. To extract significant variables influencing the algorithm and ensure model appropriateness, we interpreted cohort and personalized model predictions using Shapley Additive Explanations values.

CONCLUSIONS

Our ML-based multimodal model, incorporating 8 readily accessible predictors, demonstrated robust predictive capability for 12 months of major adverse cardiovascular and cerebrovascular events risk. This model can be used to identify high-risk individuals with AS and HFpEF following TAVR, potentially aiding in risk stratification and personalized treatment strategies.

摘要

背景

目前,关于在有症状的主动脉瓣狭窄和射血分数保留的心力衰竭(HFpEF)患者经导管主动脉瓣置换术(TAVR)后使用多模态数据进行个性化风险分层的文献较少。

目的

本研究旨在通过使用各种机器学习(ML)技术开发不良结局预测模型,提高该患者群体风险评估模型的性能。

方法

这项多中心队列研究纳入了2017年1月至2023年12月期间接受TAVR的326例诊断为严重主动脉瓣狭窄和HFpEF的患者。根据医院所属关系将患者分配到训练集(n = 195)和独立验证集(n = 131)。采用结合最小绝对收缩和选择算子逻辑回归与Boruta算法的双阶段特征选择过程,从多模态数据集中识别相关变量。总共使用5种ML模型——决策树、K近邻、随机森林、支持向量机和极端梯度提升——构建一个可视化且可解释的预测框架,以阐明模型决策过程。

结果

确定的主要特征包括年龄、N末端脑钠肽前体、空腹血糖、甘油三酯/高密度脂蛋白胆固醇比值、甘油三酯葡萄糖指数、甘油三酯葡萄糖 - 体重指数、血浆致动脉粥样硬化指数和载脂蛋白B。在这5种模型中,支持向量机在TAVR后的严重主动脉瓣狭窄和HFpEF患者主要不良心血管和脑血管事件的预测性能最佳,在独立验证集中曲线下面积达到0.756(95%CI 0.631 - 0.881)。该模型在训练集和验证集中均表现出良好的校准和稳健的预测能力,并且在决策曲线分析中与其他模型相比显示出最高的净效益。为了提取影响算法的显著变量并确保模型的适用性,我们使用Shapley加性解释值解释队列和个性化模型预测。

结论

我们基于ML的多模态模型纳入了8个易于获取的预测指标,对12个月主要不良心血管和脑血管事件风险具有稳健的预测能力。该模型可用于识别TAVR后患有主动脉瓣狭窄和HFpEF的高危个体,可能有助于风险分层和个性化治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79fc/12082054/e2bbb6038ec0/jmir_v27i1e70587_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验