Qian Mengdan, Yuan Junlong, Zheng Shuwen, Liu Yue, Liu Yufang, Yu Kun
Opt Lett. 2025 May 1;50(9):2792-2795. doi: 10.1364/OL.555960.
The powerful electromagnetic capability of a metasurface makes it a good candidate for thermal emission manipulation toward promising infrared (IR) camouflage and thermal management technology. Here, a metasurface-based infrared is fabricated to achieve multispectral camouflage as well as radiative cooling simultaneously. Cross-scale processing on metal-dielectric composite films is successfully achieved by femtosecond laser direct writing (FsLDW), which is proven to be an efficient and feasible technique in metasurface fabrication. The prepared emitter exhibits low emissivity (ɛ = 0.32, ɛ = 0.31) in atmospheric windows but high absorption in 10.6 μm so that it can effectively evade the tracking of infrared detectors and laser radars. Besides, the emitter also has high emissivity in the undetected band ( = 0.66) to dissipate possible heat accumulation. The proposed metasurface design and fabrication method empowers new ideas for the generation of optical devices toward multispectral camouflage and radiative cooling compatibility.
超表面强大的电磁能力使其成为用于热发射操控以实现有前景的红外(IR)伪装和热管理技术的理想候选材料。在此,制造了一种基于超表面的红外器件,以同时实现多光谱伪装和辐射冷却。通过飞秒激光直写(FsLDW)成功实现了对金属 - 电介质复合薄膜的跨尺度加工,这被证明是超表面制造中一种高效且可行的技术。制备的发射体在大气窗口中具有低发射率(ɛ = 0.32,ɛ = 0.31),但在10.6μm处具有高吸收率,从而能够有效躲避红外探测器和激光雷达的跟踪。此外,发射体在未被检测到的波段也具有高发射率(ɛ = 0.66),以消散可能的热量积累。所提出的超表面设计和制造方法为生成兼具多光谱伪装和辐射冷却兼容性的光学器件提供了新思路。