Suppr超能文献

使用改进的病毒群体搜索算法优化的卷积神经网络评估英语教师的教学效果。

Assessing english Language teachers' pedagogical effectiveness using convolutional neural networks optimized by modified virus colony search algorithm.

作者信息

Zhang Li

机构信息

School of Foreign Languages, Sias University, Zhengzhou, 451150, China.

出版信息

Sci Rep. 2025 May 1;15(1):15295. doi: 10.1038/s41598-025-98033-9.

Abstract

Effective teacher performance evaluation is important for enhancing the quality of educational systems. This study presents a novel approach that integrates deep learning and metaheuristics to assess the pedagogical quality of English as a foreign language (EFL) instruction in a classroom setting. A comprehensive index framework is developed, comprising five primary dimensions: instructional design, instructional materials, teaching methods and approaches, teaching effectiveness, and classroom management. Each dimension is further divided into secondary indicators that capture specific aspects of teaching quality, including pronunciation, content coverage, lesson objectives, and student engagement. The proposed approach uses a convolutional neural network (CNN) architecture optimized by a modified virus colony search (VCS) algorithm to analyze audio and video recordings of classroom interactions. The results demonstrate that the VCS/CNN algorithm can accurately evaluate EFL instruction based on multiple criteria and indicators, outperforming existing methods in terms of accuracy, robustness, flexibility, and efficiency. This study contributes to the development of a reliable and efficient teacher evaluation framework that can provide timely feedback, identify teacher strengths and weaknesses, and inform areas for professional development. The proposed approach has the potential to improve the quality of EFL instruction and administration by enhancing teacher performance and student learning outcomes.

摘要

有效的教师绩效评估对于提高教育系统的质量至关重要。本研究提出了一种将深度学习和元启发式算法相结合的新方法,用于在课堂环境中评估作为外语的英语(EFL)教学的教学质量。开发了一个综合指标框架,包括五个主要维度:教学设计、教学材料、教学方法和途径、教学效果以及课堂管理。每个维度进一步细分为捕捉教学质量特定方面的二级指标,包括发音、内容覆盖、课程目标和学生参与度。所提出的方法使用通过改进的病毒群体搜索(VCS)算法优化的卷积神经网络(CNN)架构来分析课堂互动的音频和视频记录。结果表明,VCS/CNN算法可以基于多个标准和指标准确评估EFL教学,在准确性、稳健性、灵活性和效率方面优于现有方法。本研究有助于开发一个可靠且高效的教师评估框架,该框架可以提供及时反馈,识别教师的优势和劣势,并为专业发展领域提供信息。所提出的方法有可能通过提高教师绩效和学生学习成果来提高EFL教学和管理的质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/304e/12045950/ed07e5654ac0/41598_2025_98033_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验