Suppr超能文献

一种用于基于特征评估英语学习者的混合深度学习与模糊逻辑框架。

A hybrid deep learning and fuzzy logic framework for feature-based evaluation of english Language learners.

作者信息

Zhao XiuHua

机构信息

College of Foreign Languages, Xinjiang University, Urumqi, 830046, Xinjiang, China.

出版信息

Sci Rep. 2025 Sep 29;15(1):33657. doi: 10.1038/s41598-025-17738-z.

Abstract

The integration of artificial intelligence (AI) and natural language processing (NLP) into language learning and assessment has unlocked new possibilities for accurately profiling English language learners (ELLs) and personalizing educational interventions. While previous studies have typically focused on isolated techniques either deep learning, traditional machine learning, or linguistic rule-based models there remains a critical need for comprehensive frameworks that combine the interpretability of rule-based reasoning with the predictive power of advanced AI. Addressing this gap, the present study introduces a novel hybrid methodology for ELL evaluation, integrating both rule mining through fuzzy logic and a state-of-the-art fusion model that integrates DeBERTa, metadata features, and LSTM architectures. This approach employs a hybrid DeBERTa + Metadata + LSTM (DBML) model, where DeBERTa serves as a transformer backbone to extract rich textual embeddings via attention mechanisms, Metadata features capture contextual, cognitive, and demographic learner traits, and LSTM layers are utilized for effective temporal modeling and dense integration. This comprehensive pipeline allows for complex prediction of language proficiency levels, dealing with both unstructured (text response) and structured (behavioral and demographic) data streams. Empirical comparisons against standard machine learning, deep learning, and standalone transformer models demonstrate the superiority of the proposed hybrid approach, achieving a peak accuracy of 93% significantly higher than benchmarked baselines. Furthermore, the study extensively investigates model reliability using statistical significance tests and eXplainable AI (XAI) techniques such as SHAP and DeepSHAP. These analyses not only confirm the model's robustness but also reveal the centrality of linguistic attributes (e.g., Syntax, Cohesion, Vocabulary) in classification, as further substantiated by comprehensive feature ranking including Information Gain, Gain Ratio, Gini Index, and permutation importance based on random forest algorithm for fuzzy rule extraction for top features.

摘要

将人工智能(AI)和自然语言处理(NLP)整合到语言学习与评估中,为准确描绘英语学习者(ELLs)的特征以及实现教育干预的个性化开辟了新的可能性。虽然以往的研究通常侧重于孤立的技术,如深度学习、传统机器学习或基于语言规则的模型,但仍然迫切需要将基于规则的推理的可解释性与先进人工智能的预测能力相结合的综合框架。为了弥补这一差距,本研究引入了一种用于ELL评估的新型混合方法,该方法将通过模糊逻辑进行规则挖掘与一种集成了DeBERTa、元数据特征和长短期记忆(LSTM)架构的先进融合模型相结合。这种方法采用了一种混合的DeBERTa + 元数据 + LSTM(DBML)模型,其中DeBERTa作为一个变换器主干,通过注意力机制提取丰富的文本嵌入,元数据特征捕捉学习者的上下文、认知和人口统计学特征,而LSTM层则用于有效的时间建模和密集集成。这种全面的流程允许对语言熟练程度进行复杂的预测,处理非结构化(文本响应)和结构化(行为和人口统计学)数据流。与标准机器学习、深度学习和独立变换器模型的实证比较表明,所提出的混合方法具有优越性,达到了93%的峰值准确率,显著高于基准基线。此外,该研究使用统计显著性检验和诸如SHAP和DeepSHAP等可解释人工智能(XAI)技术广泛研究了模型的可靠性。这些分析不仅证实了模型的稳健性,还揭示了语言属性(如句法、衔接、词汇)在分类中的核心地位,基于随机森林算法进行模糊规则提取的综合特征排序(包括信息增益、增益比、基尼指数和排列重要性)进一步证实了这一点,以确定顶级特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efad/12480715/81cc21a0061a/41598_2025_17738_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验