Berndt Jason D, Duffy Fergal J, D'Ascenzo Mark D, Miller Leslie R, Qi Yijun, Whitney G Adam, Danziger Samuel A, Vachani Anil, Massion Pierre P, Deppen Stephen A, Lipshutz Robert J, Aitchison John D, Smith Jennifer J
medRxiv. 2025 Apr 21:2024.11.04.24316585. doi: 10.1101/2024.11.04.24316585.
The indicator cell assay platform (iCAP) is a tool for blood-based diagnostics that addresses the low signal-to-noise ratio of blood biomarkers by using cells as biosensors. The assay exposes small volumes of patient serum to standardized cells in culture and classifies disease by machine learning analysis of the gene expression readout from the cells. We developed the lung cancer iCAP (LC-iCAP) as a rule-out test for nodule management in computed tomography (CT)-based lung-cancer screening. We performed analytical optimization, rigorous reproducibility testing, and assessed performance in a study with prospective-specimen-collection, retrospective-blinded-evaluation (PRoBE) design. LC-iCAP achieved an AUC of 0.64 (95% CI, 0.51-0.76) on the ROC curve in validation. Post-validation integration of the assay readout with CT-based features showed improved clinical utility compared to the Mayo Clinic model, with 90% sensitivity, 64% specificity, and 95% negative predictive value at 25% prevalence. The lung-cancer specific readout was enriched for hypoxia-responsive genes and was reproducible across different indicator cell lineages. This is the first validation study of an iCAP and the first application for early cancer detection. The LC-iCAP uses immortalized cells, is scalable and cost-effective and has a multivariate readout. This study supports its potential as a next-generation multivalent platform for precision medicine applications in multi-cancer screening and drug development.
We developed the LC-iCAP, novel approach for liquid biopsies that uses cultured cells as biosensors. The cells detect cancer signals in serum and transduce them into standardized gene expression profiles, which are analyzed by machine learning for disease classification. The assay is inexpensive and scalable and has a multivariate readout with potential utility for precision medicine and multi-cancer early detection.A LC-iCAP-based lung cancer risk classifier demonstrated improved specificity compared to existing tests, suggesting meaningful clinical utility for managing indeterminate pulmonary nodules.We identified a lung-cancer specific transcriptional response to hypoxia in the assay readout, implicating HIF1A and HIF2A activity in the response consistent with known lung cancer biology and highlighting the platform's mechanistic relevance.Standardized controls and validation studies demonstrated assay reproducibility, lineage stability, and detection of technical errors-supporting the platform's readiness for clinical deployment.
指示细胞分析平台(iCAP)是一种用于血液诊断的工具,它通过将细胞用作生物传感器来解决血液生物标志物信噪比低的问题。该分析方法将少量患者血清暴露于培养中的标准化细胞,并通过对细胞基因表达读数进行机器学习分析来对疾病进行分类。我们开发了肺癌iCAP(LC-iCAP),作为基于计算机断层扫描(CT)的肺癌筛查中结节管理的排除测试。我们进行了分析优化、严格的重现性测试,并在一项采用前瞻性样本收集、回顾性盲法评估(PRoBE)设计的研究中评估了性能。LC-iCAP在验证中的ROC曲线上的AUC为0.64(95%CI,0.51 - 0.76)。分析读数与基于CT的特征进行验证后整合显示,与梅奥诊所模型相比,临床实用性有所提高,在患病率为25%时,灵敏度为90%,特异性为64%,阴性预测值为95%。肺癌特异性读数富含缺氧反应基因,并且在不同指示细胞谱系中具有可重复性。这是iCAP的首次验证研究以及早期癌症检测的首次应用。LC-iCAP使用永生化细胞,具有可扩展性且成本效益高,并具有多变量读数。这项研究支持了其作为下一代多价平台在多癌筛查和药物开发中用于精准医学应用的潜力。
我们开发了LC-iCAP,这是一种新型的液体活检方法,它使用培养细胞作为生物传感器。细胞检测血清中的癌症信号并将其转化为标准化的基因表达谱,通过机器学习对其进行分析以进行疾病分类。该分析方法价格低廉且具有可扩展性,具有多变量读数,对精准医学和多癌早期检测具有潜在用途。基于LC-iCAP的肺癌风险分类器与现有测试相比显示出更高的特异性,表明在管理不确定的肺结节方面具有有意义的临床实用性。我们在分析读数中确定了对缺氧的肺癌特异性转录反应,表明HIF1A和HIF2A活性参与了该反应,这与已知的肺癌生物学一致,并突出了该平台的机制相关性。标准化对照和验证研究证明了分析的重现性、谱系稳定性以及技术误差的检测,支持该平台可用于临床部署。