Suppr超能文献

放射组学和放射基因组学在预测膀胱癌肿瘤学结局中的当前作用。

Current role of radiomics and radiogenomics in predicting oncological outcomes in bladder cancer.

作者信息

O'Sullivan Niall J, Temperley Hugo C, Corr Alison, Meaney James F M, Lonergan Peter E, Kelly Michael E

机构信息

Department of Radiology, St. James's Hospital, Dublin, Ireland.

School of Medicine, Trinity College Dublin, Dublin, Ireland.

出版信息

Curr Urol. 2025 Jan;19(1):43-48. doi: 10.1097/CU9.0000000000000235. Epub 2024 Jan 11.

Abstract

BACKGROUND

Radiomics refers to the conversion of medical images into high-throughput, quantifiable data to analyze disease patterns, aid decision-making, and predict prognosis. Radiogenomics is an extension of radiomics and involves a combination of conventional radiomics techniques with molecular analysis in the form of genomic and transcriptomic data. In the field of bladder cancer, studies have investigated the development, implementation, and efficacy of radiomic and radiogenomic nomograms in predicting tumor grade, gene expression, and oncological outcomes, with variable results. We aimed to perform a systematic review of the current literature to investigate the development of a radiomics-based nomogram to predict oncological outcomes in bladder cancer.

MATERIALS AND METHODS

The Medline, EMBASE, and Web of Science databases were searched up to February 17, 2023. Gray literature was also searched to further identify other suitable publications. Quality assessment of the included studies was performed using the Quality Assessment of Diagnostic Accuracy Studies 2 and Radiomics Quality Score.

RESULTS

Radiogenomic nomograms generally had good performance in predicting the primary outcome across the included studies. The median area under the curve, sensitivity, and specificity across the included studies were 0.83 (0.63-0.973), 0.813, and 0.815, respectively, in the training set and 0.75 (0.702-0.838), 0.723, and 0.652, respectively, in the validation set.

CONCLUSIONS

Several studies have demonstrated the predictive potential of radiomic and radiogenomic models in advanced pelvic oncology. Further large-scale studies in a prospective setting are required to further validate results and allow generalized use in modern medicine.

摘要

背景

放射组学是指将医学图像转化为高通量、可量化的数据,以分析疾病模式、辅助决策和预测预后。放射基因组学是放射组学的延伸,涉及将传统放射组学技术与基因组和转录组数据形式的分子分析相结合。在膀胱癌领域,已有研究探讨了放射组学和放射基因组学列线图在预测肿瘤分级、基因表达和肿瘤学结局方面的开发、实施及疗效,但结果各异。我们旨在对当前文献进行系统综述,以研究基于放射组学的列线图在预测膀胱癌肿瘤学结局方面的进展。

材料与方法

检索截至2023年2月17日的Medline、EMBASE和Web of Science数据库。还检索了灰色文献以进一步确定其他合适的出版物。使用诊断准确性研究质量评估2和放射组学质量评分对纳入研究进行质量评估。

结果

在纳入的研究中,放射基因组学列线图在预测主要结局方面总体表现良好。纳入研究在训练集中的曲线下面积中位数、敏感性和特异性分别为0.83(0.63 - 0.973)、0.813和0.815,在验证集中分别为0.75(0.702 - 0.838)、0.723和0.652。

结论

多项研究已证明放射组学和放射基因组学模型在晚期盆腔肿瘤学中的预测潜力。需要在前瞻性环境中进行进一步的大规模研究,以进一步验证结果并使其能够在现代医学中广泛应用。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验