Suppr超能文献

基于扩散概率模型的深度学习用于在深紫外荧光图像中自动检测乳腺癌

DEEP LEARNING FOR AUTOMATED DETECTION OF BREAST CANCER IN DEEP ULTRAVIOLET FLUORESCENCE IMAGES WITH DIFFUSION PROBABILISTIC MODEL.

作者信息

Ghahfarokhi Sepehr Salem, To Tyrell, Jorns Julie, Yen Tina, Yu Bing, Ye Dong Hye

机构信息

Department of Computer Science, Georgia State University, Atlanta, GA, USA.

Department of Electrical and Computer Engineering, Marquette University, Milwaukee, WI, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/ISBI56570.2024.10635349. Epub 2024 Aug 22.

Abstract

Data limitation is a significant challenge in applying deep learning to medical images. Recently, the diffusion probabilistic model (DPM) has shown the potential to generate high-quality images by converting Gaussian random noise into realistic images. In this paper, we apply the DPM to augment the deep ultraviolet fluorescence (DUV) image dataset with an aim to improve breast cancer classification for intra-operative margin assessment. For classification, we divide the whole surface DUV image into small patches and extract convolutional features for each patch by utilizing the pre-trained ResNet. Then, we feed them into an XGBoost classifier for patch-level decisions and then fuse them with a regional importance map computed by Grad-CAM++ for whole surface-level prediction. Our experimental results show that augmenting the training dataset with the DPM significantly improves breast cancer detection performance in DUV images, increasing accuracy from 93% to 97%, compared to using Affine transformations and ProGAN.

摘要

数据限制是将深度学习应用于医学图像时面临的一项重大挑战。最近,扩散概率模型(DPM)已显示出通过将高斯随机噪声转换为真实图像来生成高质量图像的潜力。在本文中,我们应用DPM来扩充深紫外荧光(DUV)图像数据集,旨在改善用于术中切缘评估的乳腺癌分类。对于分类,我们将整个表面DUV图像划分为小补丁,并利用预训练的ResNet为每个补丁提取卷积特征。然后,我们将它们输入到XGBoost分类器中进行补丁级别的决策,然后将其与通过Grad-CAM++计算的区域重要性图融合,以进行整个表面级别的预测。我们的实验结果表明,与使用仿射变换和ProGAN相比,用DPM扩充训练数据集可显著提高DUV图像中乳腺癌的检测性能,将准确率从93%提高到97%。

相似文献

6
Anterior Approach Total Ankle Arthroplasty with Patient-Specific Cut Guides.使用患者特异性截骨导向器的前路全踝关节置换术。
JBJS Essent Surg Tech. 2025 Aug 15;15(3). doi: 10.2106/JBJS.ST.23.00027. eCollection 2025 Jul-Sep.

本文引用的文献

4
Breast Cancer Histopathological Image Classification with Adversarial Image Synthesis.基于对抗图像合成的乳腺癌病理图像分类。
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3387-3390. doi: 10.1109/EMBC46164.2021.9630678.
7
A connection between score matching and denoising autoencoders.得分匹配与去噪自动编码器之间的联系。
Neural Comput. 2011 Jul;23(7):1661-74. doi: 10.1162/NECO_a_00142. Epub 2011 Apr 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验