Ifejeokwu Onwodi V, Do An, El Khatib Sanad M, Ho Nhu H, Zavala Angel, Othy Shivashankar, Acharya Munjal M
University of California Irvine.
Res Sq. 2025 Apr 25:rs.3.rs-6389488. doi: 10.21203/rs.3.rs-6389488/v1.
Blockade of Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and Programmed Cell Death Protein 1 (PD-1) significantly improves progression-free survival of individuals with cancers, including melanoma. In addition to unleashing antitumor immunity, immune checkpoint inhibition (ICI) therapies disrupt immune regulatory networks critical for maintaining homeostasis in various tissues, including the central nervous system (CNS). Despite growing reports of cancer- and ICI-related cognitive impairments among survivors, our understanding of the pathophysiology of ICI-related neurodegenerative effects is limited.
In this study, using a murine model of melanoma, cognitive function tests, and neuroimmunological assays, we investigate the cellular mechanisms and impact of combinatorial blockade of CTLA-4 and PD-1 on brain function. Syngeneic melanoma was induced in a C57Bl6 mouse model using D4M-3A.UV2 melanoma cells. After confirmation of tumor growth, cancer-bearing and non-cancer mice received combinatorial treatment of anti-CTLA-4 (two doses per week) and anti-PD-1 (three doses per week) for three weeks. One month after completing ICI treatment, mice were administered learning, memory, and memory consolidation cognitive function tasks. Neuroinflammation, synaptic, and myelin integrity analyses and immune cell status in the brain were conducted to analyze neuroimmunological changes post-ICI treatment.
While tumor-related alterations in brain function were evident, combination ICI specifically disrupted synaptic integrity and reduced myelin levels independent of neurogenesis and neuronal plasticity in both cancer-bearing and non-cancer mice brains. Combination ICI selectively impaired hippocampal-dependent cognitive function. This is associated with two-fold increase in T cell numbers within the brain along with immune activation of myeloid cells, especially microglia. Furthermore, an experimental autoimmune encephalomyelitis model revealed that combination ICI predisposes the CNS to exacerbated autoimmunity, highlighting neuroinflammation-related, and tumor-independent, neurodegenerative sequelae of combination ICI.
Our results demonstrate that combinatorial blockade of CTLA-4 and PD-1 destabilizes neuroimmune-regulatory networks and activates microglia, contributing to long-term neurodegeneration and cognitive impairments. Therefore, selectively limiting microglial activation could be a potential avenue to preserve CNS functions while maintaining the therapeutic benefits of rapidly evolving ICIs and their combinations.
细胞毒性T淋巴细胞相关蛋白4(CTLA-4)和程序性细胞死亡蛋白1(PD-1)的阻断显著改善了包括黑色素瘤在内的癌症患者的无进展生存期。除了释放抗肿瘤免疫力外,免疫检查点抑制(ICI)疗法还会破坏对维持包括中枢神经系统(CNS)在内的各种组织的内环境平衡至关重要的免疫调节网络。尽管越来越多的报告指出癌症幸存者和ICI相关的认知障碍,但我们对ICI相关神经退行性影响的病理生理学的了解仍然有限。
在本研究中,我们使用黑色素瘤小鼠模型、认知功能测试和神经免疫学分析,研究CTLA-4和PD-1联合阻断对脑功能的细胞机制和影响。使用D4M-3A.UV2黑色素瘤细胞在C57Bl6小鼠模型中诱导同基因黑色素瘤。在确认肿瘤生长后,荷瘤小鼠和非荷瘤小鼠接受抗CTLA-4(每周两剂)和抗PD-1(每周三剂)的联合治疗,持续三周。在完成ICI治疗一个月后,对小鼠进行学习、记忆和记忆巩固认知功能任务测试。进行神经炎症、突触和髓鞘完整性分析以及脑内免疫细胞状态分析,以分析ICI治疗后的神经免疫学变化。
虽然脑功能中与肿瘤相关的改变很明显,但联合ICI在荷瘤小鼠和非荷瘤小鼠的大脑中特异性地破坏了突触完整性并降低了髓鞘水平,而与神经发生和神经元可塑性无关。联合ICI选择性地损害了海马依赖性认知功能。这与脑内T细胞数量增加两倍以及髓样细胞(尤其是小胶质细胞)的免疫激活有关。此外,实验性自身免疫性脑脊髓炎模型显示,联合ICI使中枢神经系统更容易发生自身免疫加剧,突出了联合ICI与神经炎症相关且与肿瘤无关的神经退行性后遗症。
我们的结果表明,CTLA-4和PD-1的联合阻断会破坏神经免疫调节网络并激活小胶质细胞,导致长期神经退行性变和认知障碍。因此,选择性地限制小胶质细胞的激活可能是在维持快速发展的ICI及其组合的治疗益处的同时保护中枢神经系统功能的潜在途径。