Jang Taehwan, Shin Seung-Jae, Lim Hyung-Kyu, Goddard William A, Kim Hyungjun
Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea.
School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
JACS Au. 2025 Apr 12;5(4):2047-2058. doi: 10.1021/jacsau.5c00176. eCollection 2025 Apr 28.
The solid-liquid interface plays a crucial role in governing complex chemical phenomena, such as heterogeneous catalysis and (photo)electrochemical processes. Despite its importance, acquiring atom-scale information about these buried interfaces remains highly challenging, which has led to an increasing demand for reliable atomic simulations of solid-liquid interfaces. Here, we introduce an innovative first-principles-based multiscale simulation approach called DFT-CES2, a mean-field QM/MM method. To accurately model interactions at the interface, we developed a quantum-mechanics-based embedding scheme that partitions complex noncovalent interactions into Pauli repulsion, Coulomb (including polarization), and London dispersion energies, which are described using atom-dependent transferable parameters. As validated by comparison with high-level quantum mechanical energies, DFT-CES2 demonstrates chemical accuracy in describing interfacial interactions. DFT-CES2 enables the investigation of complex solid-liquid interfaces while avoiding extensive parametrization. Therefore, we expect DFT-CES2 to be broadly applicable for elucidating atom-scale details of large scale solid-liquid interfaces for multicomponent systems.
固液界面在控制复杂化学现象(如多相催化和(光)电化学过程)中起着关键作用。尽管其很重要,但获取有关这些埋藏界面的原子尺度信息仍然极具挑战性,这导致对固液界面可靠原子模拟的需求不断增加。在此,我们引入一种创新的基于第一性原理的多尺度模拟方法,称为DFT-CES2,这是一种平均场量子力学/分子力学方法。为了准确模拟界面处的相互作用,我们开发了一种基于量子力学的嵌入方案,该方案将复杂的非共价相互作用划分为泡利排斥、库仑(包括极化)和伦敦色散能,这些能量使用与原子相关的可转移参数来描述。通过与高水平量子力学能量进行比较验证,DFT-CES2在描述界面相互作用方面展现出化学精度。DFT-CES2能够研究复杂的固液界面,同时避免大量的参数化。因此,我们期望DFT-CES2广泛适用于阐明多组分系统大规模固液界面的原子尺度细节。