Suppr超能文献

用于小儿远端前臂骨折诊断的自动超声图像对齐

Automatic ultrasound image alignment for diagnosis of pediatric distal forearm fractures.

作者信息

Liu Peng, Hu Yujia, Schultz Jurek, Xu Jinjing, von Schrottenberg Christoph, Schwerk Philipp, Pohl Josephine, Fitze Guido, Speidel Stefanie, Pfeiffer Micha

机构信息

Translational Surgical Oncology, National Center for Tumor Diseases, Dresden, Germany.

German Cancer Research Center (DKFZ), Heidelberg, Germany.

出版信息

Int J Comput Assist Radiol Surg. 2025 Jun;20(6):1249-1254. doi: 10.1007/s11548-025-03361-w. Epub 2025 May 2.

Abstract

PURPOSE

The study aims to develop an automatic method to align ultrasound images of the distal forearm for diagnosing pediatric fractures. This approach seeks to bypass the reliance on X-rays for fracture diagnosis, thereby minimizing radiation exposure and making the process less painful, as well as creating a more child-friendly diagnostic pathway.

METHODS

We present a fully automatic pipeline to align paired POCUS images. We first leverage a deep learning model to delineate bone boundaries, from which we obtain key anatomical landmarks. These landmarks are finally used to guide the optimization-based alignment process, for which we propose three optimization constraints: aligning specific points, ensuring parallel orientation of the bone segments, and matching the bone widths.

RESULTS

The method demonstrated high alignment accuracy compared to reference X-rays in terms of boundary distances. A morphology experiment including fracture classification and angulation measurement presents comparable performance when based on the merged ultrasound images and conventional X-rays, justifying the effectiveness of our method in these cases.

CONCLUSIONS

The study introduced an effective and fully automatic pipeline for aligning ultrasound images, showing potential to replace X-rays for diagnosing pediatric distal forearm fractures. Initial tests show that surgeons find many of our results sufficient for diagnosis. Future work will focus on increasing dataset size to improve diagnostic accuracy and reliability.

摘要

目的

本研究旨在开发一种自动方法,用于对齐前臂远端的超声图像以诊断小儿骨折。这种方法旨在避免在骨折诊断中依赖X射线,从而将辐射暴露降至最低,使过程不那么痛苦,并创建一条对儿童更友好的诊断途径。

方法

我们提出了一种用于对齐配对的床旁超声(POCUS)图像的全自动流程。我们首先利用深度学习模型来描绘骨骼边界,从中获取关键的解剖标志点。这些标志点最终用于指导基于优化的对齐过程,为此我们提出了三个优化约束条件:对齐特定点、确保骨段的平行方向以及匹配骨宽度。

结果

与参考X射线相比,该方法在边界距离方面显示出较高的对齐精度。一项包括骨折分类和角度测量的形态学实验表明,基于合并后的超声图像和传统X射线时具有可比的性能,证明了我们的方法在这些情况下的有效性。

结论

本研究介绍了一种有效且全自动的超声图像对齐流程,显示出替代X射线诊断小儿前臂远端骨折的潜力。初步测试表明,外科医生发现我们的许多结果足以用于诊断。未来的工作将集中在增加数据集规模以提高诊断准确性和可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33a9/12167337/ae539f8f5a41/11548_2025_3361_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验