Liu Wenbin, Li Jing, Yuan Xiaohan, Chen Chengwei, Shen Yixuan, Zhang Xinyue, Yu Jieyu, Zhu Mengmeng, Fang Xu, Liu Fang, Wang Tiegong, Wang Li, Fan Jie, Jiang Hui, Lu Jianping, Shao Chengwei, Bian Yun
Department of Radiology, Changhai Hospital.
Department of Pathology, Huashan Hospital.
Pancreas. 2025 May 1;54(5):e430-e441. doi: 10.1097/MPA.0000000000002463.
Accurate survival prediction for pancreatic ductal adenocarcinoma (PDAC) is crucial for personalized treatment strategies. This study aims to construct a novel pathomics indicator using hematoxylin and eosin-stained whole slide images and deep learning to enhance PDAC prognosis prediction.
A retrospective, 2-center study analyzed 864 PDAC patients diagnosed between January 2015 and March 2022. Using weakly supervised and multiple instance learning, pathologic features predicting 2-year survival were extracted. Pathomics features, including probability histograms and TF-IDF, were selected through random survival forests. Survival analysis was conducted using Kaplan-Meier curves, log-rank tests, and Cox regression, with AUROC and C-index used to assess model discrimination.
The study cohort comprised 489 patients for training, 211 for validation, and 164 in the neoadjuvant therapy (NAT) group. A pathomics score was developed using 7 features, dividing patients into high-risk and low-risk groups based on the median score of 131.11. Significant survival differences were observed between groups (P<0.0001). The pathomics score was a robust independent prognostic factor [Training: hazard ratio (HR)=3.90; Validation: HR=3.49; NAT: HR=4.82; all P<0.001]. Subgroup analyses revealed higher survival rates for early-stage low-risk patients and NAT responders compared to high-risk counterparts (both P<0.05 and P<0.0001). The pathomics model surpassed clinical models in predicting 1-, 2-, and 3-year survival.
The pathomics score serves as a cost-effective and precise prognostic tool, functioning as an independent prognostic indicator that enables precise stratification and enhances the prediction of prognosis when combined with traditional pathologic features. This advancement has the potential to significantly impact PDAC treatment planning and improve patient outcomes.
准确预测胰腺导管腺癌(PDAC)的生存率对于个性化治疗策略至关重要。本研究旨在利用苏木精和伊红染色的全玻片图像及深度学习构建一种新的病理组学指标,以加强对PDAC预后的预测。
一项回顾性、2中心研究分析了2015年1月至2022年3月期间确诊的864例PDAC患者。采用弱监督和多实例学习,提取预测2年生存率的病理特征。通过随机生存森林选择包括概率直方图和词频-逆文档频率(TF-IDF)在内的病理组学特征。使用Kaplan-Meier曲线、对数秩检验和Cox回归进行生存分析,采用受试者工作特征曲线下面积(AUROC)和一致性指数(C-index)评估模型的辨别力。
研究队列包括489例用于训练的患者、211例用于验证的患者以及164例新辅助治疗(NAT)组患者。利用7个特征制定了病理组学评分,根据中位数131.11将患者分为高风险组和低风险组。两组间观察到显著的生存差异(P<0.0001)。病理组学评分是一个稳健的独立预后因素[训练组:风险比(HR)=3.90;验证组:HR=3.49;NAT组:HR=4.82;均P<0.001]。亚组分析显示,与高风险患者相比,早期低风险患者和NAT反应者的生存率更高(均P<0.05和P<0.0001)。病理组学模型在预测1年、2年和3年生存率方面优于临床模型。
病理组学评分是一种经济高效且精确的预后工具,作为独立的预后指标,与传统病理特征相结合时能够实现精确分层并增强预后预测。这一进展有可能对PDAC治疗规划产生重大影响并改善患者预后。