Al-Dekah Arwa M, Sweileh Waleed
Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology Faculty of Science and Art, Irbid, Jordan.
Al-Najah National University, Nablus, Palestine, State of
BMJ Open. 2025 May 2;15(5):e101169. doi: 10.1136/bmjopen-2025-101169.
OBJECTIVE: This study aims to shed light on the transformative potential of artificial intelligence (AI) in the early detection and risk assessment of non-communicable diseases (NCDs). STUDY DESIGN: Bibliometric analysis. SETTING: Articles related to AI in early identification and risk evaluation of NCDs from 2000 to 2024 were retrieved from the Scopus database. METHODS: This comprehensive bibliometric study focuses on a single database, Scopus and employs narrative synthesis for concise yet informative summaries. Microsoft Excel V.365 and VOSviewer software (V.1.6.20) were used to summarise bibliometric features. RESULTS: The study retrieved 1745 relevant articles, with a notable surge in research activity in recent years. Core journals included Scientific Reports and IEEE Access, and core institutions included the Harvard Medical School and the Ministry of Education of the People's Republic of China, while core countries comprised China, the USA, India, the UK and Saudi Arabia. Citation trends indicated substantial growth and recognition of AI's impact on NCDs management. Frequent author keywords identified key research hotspots, including specific NCDs like Alzheimer's disease and diabetes. Risk assessment studies demonstrated improved predictions for heart failure, cardiovascular risk, breast cancer, diabetes and inflammatory bowel disease. CONCLUSION: Our findings highlight the increasing role of AI in early detection and risk prediction of NCDs, emphasising its widening research impact and future clinical potential.
目的:本研究旨在揭示人工智能(AI)在非传染性疾病(NCDs)早期检测和风险评估中的变革潜力。 研究设计:文献计量分析。 研究背景:从Scopus数据库中检索2000年至2024年与AI在NCDs早期识别和风险评估方面相关的文章。 方法:这项全面的文献计量研究聚焦于单一数据库Scopus,并采用叙述性综合法进行简洁而信息丰富的总结。使用Microsoft Excel V.365和VOSviewer软件(V.1.6.20)总结文献计量特征。 结果:该研究检索到1745篇相关文章,近年来研究活动显著增加。核心期刊包括《科学报告》和《IEEE接入》,核心机构包括哈佛医学院和中华人民共和国教育部,核心国家包括中国、美国、印度、英国和沙特阿拉伯。引文趋势表明AI对NCDs管理的影响得到了大幅增长和认可。频繁出现的作者关键词确定了关键研究热点,包括阿尔茨海默病和糖尿病等特定NCDs。风险评估研究表明对心力衰竭、心血管风险、乳腺癌、糖尿病和炎症性肠病的预测有所改善。 结论:我们的研究结果凸显了AI在NCDs早期检测和风险预测中日益重要的作用,强调了其不断扩大的研究影响和未来的临床潜力。
Front Biosci (Landmark Ed). 2022-8-31
Adv Respir Med. 2024-10-17
Front Plant Sci. 2024-6-13