文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能在非传染性疾病早期识别与风险评估中的作用:全球研究趋势的文献计量分析

Role of artificial intelligence in early identification and risk evaluation of non-communicable diseases: a bibliometric analysis of global research trends.

作者信息

Al-Dekah Arwa M, Sweileh Waleed

机构信息

Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology Faculty of Science and Art, Irbid, Jordan.

Al-Najah National University, Nablus, Palestine, State of

出版信息

BMJ Open. 2025 May 2;15(5):e101169. doi: 10.1136/bmjopen-2025-101169.


DOI:10.1136/bmjopen-2025-101169
PMID:40316361
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12049965/
Abstract

OBJECTIVE: This study aims to shed light on the transformative potential of artificial intelligence (AI) in the early detection and risk assessment of non-communicable diseases (NCDs). STUDY DESIGN: Bibliometric analysis. SETTING: Articles related to AI in early identification and risk evaluation of NCDs from 2000 to 2024 were retrieved from the Scopus database. METHODS: This comprehensive bibliometric study focuses on a single database, Scopus and employs narrative synthesis for concise yet informative summaries. Microsoft Excel V.365 and VOSviewer software (V.1.6.20) were used to summarise bibliometric features. RESULTS: The study retrieved 1745 relevant articles, with a notable surge in research activity in recent years. Core journals included Scientific Reports and IEEE Access, and core institutions included the Harvard Medical School and the Ministry of Education of the People's Republic of China, while core countries comprised China, the USA, India, the UK and Saudi Arabia. Citation trends indicated substantial growth and recognition of AI's impact on NCDs management. Frequent author keywords identified key research hotspots, including specific NCDs like Alzheimer's disease and diabetes. Risk assessment studies demonstrated improved predictions for heart failure, cardiovascular risk, breast cancer, diabetes and inflammatory bowel disease. CONCLUSION: Our findings highlight the increasing role of AI in early detection and risk prediction of NCDs, emphasising its widening research impact and future clinical potential.

摘要

目的:本研究旨在揭示人工智能(AI)在非传染性疾病(NCDs)早期检测和风险评估中的变革潜力。 研究设计:文献计量分析。 研究背景:从Scopus数据库中检索2000年至2024年与AI在NCDs早期识别和风险评估方面相关的文章。 方法:这项全面的文献计量研究聚焦于单一数据库Scopus,并采用叙述性综合法进行简洁而信息丰富的总结。使用Microsoft Excel V.365和VOSviewer软件(V.1.6.20)总结文献计量特征。 结果:该研究检索到1745篇相关文章,近年来研究活动显著增加。核心期刊包括《科学报告》和《IEEE接入》,核心机构包括哈佛医学院和中华人民共和国教育部,核心国家包括中国、美国、印度、英国和沙特阿拉伯。引文趋势表明AI对NCDs管理的影响得到了大幅增长和认可。频繁出现的作者关键词确定了关键研究热点,包括阿尔茨海默病和糖尿病等特定NCDs。风险评估研究表明对心力衰竭、心血管风险、乳腺癌、糖尿病和炎症性肠病的预测有所改善。 结论:我们的研究结果凸显了AI在NCDs早期检测和风险预测中日益重要的作用,强调了其不断扩大的研究影响和未来的临床潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ff/12049965/45790962de05/bmjopen-15-5-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ff/12049965/ff73a36d69cd/bmjopen-15-5-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ff/12049965/841e3724d17f/bmjopen-15-5-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ff/12049965/7231a1eb5266/bmjopen-15-5-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ff/12049965/45790962de05/bmjopen-15-5-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ff/12049965/ff73a36d69cd/bmjopen-15-5-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ff/12049965/841e3724d17f/bmjopen-15-5-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ff/12049965/7231a1eb5266/bmjopen-15-5-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ff/12049965/45790962de05/bmjopen-15-5-g004.jpg

相似文献

[1]
Role of artificial intelligence in early identification and risk evaluation of non-communicable diseases: a bibliometric analysis of global research trends.

BMJ Open. 2025-5-2

[2]
Global Research Trends, Hotspots, Impacts, and Emergence of Artificial Intelligence and Machine Learning in Health and Medicine: A 25-Year Bibliometric Analysis.

Healthcare (Basel). 2025-4-13

[3]
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.

Front Biosci (Landmark Ed). 2022-8-31

[4]
Research hotspots and frontiers of machine learning in renal medicine: a bibliometric and visual analysis from 2013 to 2024.

Int Urol Nephrol. 2025-3

[5]
Global output of clinical application research on artificial intelligence in the past decade: a scientometric study and science mapping.

Syst Rev. 2025-3-15

[6]
Identifying and Visualizing Global Research Trends and Hotspots of Artificial Intelligence in Medical Ultrasound: A Bibliometric Analysis.

Curr Med Imaging. 2024

[7]
Knowledge domain and frontier trends of artificial intelligence applied in solid organ transplantation: A visualization analysis.

Int J Med Inform. 2025-3

[8]
Artificial Intelligence in Chronic Obstructive Pulmonary Disease: Research Status, Trends, and Future Directions --A Bibliometric Analysis from 2009 to 2023.

Int J Chron Obstruct Pulmon Dis. 2024

[9]
Research hotspots and trends of artificial intelligence in rheumatoid arthritis: A bibliometric and visualized study.

Math Biosci Eng. 2023-11-10

[10]
Comprehensive Global Analysis of Future Trends in Artificial Intelligence-Assisted Veterinary Medicine.

Vet Med Sci. 2025-5

本文引用的文献

[1]
The application of artificial intelligence in diagnosis of Alzheimer's disease: a bibliometric analysis.

Front Neurol. 2024-12-5

[2]
Application of Artificial Intelligence in the diagnosis and treatment of colorectal cancer: a bibliometric analysis, 2004-2023.

Front Oncol. 2024-10-11

[3]
Secure and Transparent Lung and Colon Cancer Classification Using Blockchain and Microsoft Azure.

Adv Respir Med. 2024-10-17

[4]
Semantic segmentation of microbial alterations based on SegFormer.

Front Plant Sci. 2024-6-13

[5]
Employing machine learning for enhanced abdominal fat prediction in cavitation post-treatment.

Sci Rep. 2024-5-14

[6]
The path from task-specific to general purpose artificial intelligence for medical diagnostics: A bibliometric analysis.

Comput Biol Med. 2024-4

[7]
Revolutionizing core muscle analysis in female sexual dysfunction based on machine learning.

Sci Rep. 2024-2-27

[8]
Optimizing classification of diseases through language model analysis of symptoms.

Sci Rep. 2024-1-17

[9]
Development and Validation of a Machine Learning Model to Predict Weekly Risk of Hypoglycemia in Patients with Type 1 Diabetes Based on Continuous Glucose Monitoring.

Diabetes Technol Ther. 2024-7

[10]
A Deep Learning-Based Ensemble Method for Early Diagnosis of Alzheimer's Disease using MRI Images.

Neuroinformatics. 2024-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索