Department of Mathematics and Statistics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia.
Department of Computer Science, Faculty of Science, Minia University, El Minia 61519, Egypt.
Adv Respir Med. 2024 Oct 17;92(5):395-420. doi: 10.3390/arm92050037.
The global healthcare system faces challenges in diagnosing and managing lung and colon cancers, which are significant health burdens. Traditional diagnostic methods are inefficient and prone to errors, while data privacy and security concerns persist.
This study aims to develop a secure and transparent framework for remote consultation and classification of lung and colon cancer, leveraging blockchain technology and Microsoft Azure cloud services. Dataset and Features: The framework utilizes the LC25000 dataset, containing 25,000 histopathological images, for training and evaluating advanced machine learning models. Key features include secure data upload, anonymization, encryption, and controlled access via blockchain and Azure services.
The proposed framework integrates Microsoft Azure's cloud services with a permissioned blockchain network. Patients upload CT scans through a mobile app, which are then preprocessed, anonymized, and stored securely in Azure Blob Storage. Blockchain smart contracts manage data access, ensuring only authorized specialists can retrieve and analyze the scans. Azure Machine Learning is used to train and deploy state-of-the-art machine learning models for cancer classification. Evaluation Metrics: The framework's performance is evaluated using metrics such as accuracy, precision, recall, and 1-, demonstrating the effectiveness of the integrated approach in enhancing diagnostic accuracy and data security.
The proposed framework achieves an impressive accuracy of 100% for lung and colon cancer classification using DenseNet, ResNet50, and MobileNet models with different split ratios (70-30, 80-20, 90-10). The 1- and k-fold cross-validation accuracy (5-fold and 10-fold) also demonstrate exceptional performance, with values exceeding 99.9%. Real-time notifications and secure remote consultations enhance the efficiency and transparency of the diagnostic process, contributing to better patient outcomes and streamlined cancer care management.
全球医疗保健系统在诊断和管理肺癌和结肠癌方面面临挑战,这些疾病是重大的健康负担。传统的诊断方法效率低下且容易出错,同时数据隐私和安全问题仍然存在。
本研究旨在开发一个安全透明的框架,用于远程咨询和分类肺癌和结肠癌,利用区块链技术和 Microsoft Azure 云服务。
该框架使用 LC25000 数据集,其中包含 25000 张组织病理学图像,用于训练和评估先进的机器学习模型。关键特征包括安全地上传数据、匿名化、加密以及通过区块链和 Azure 服务进行受控访问。
该框架将 Microsoft Azure 的云服务与许可的区块链网络集成。患者通过移动应用程序上传 CT 扫描,然后对其进行预处理、匿名化,并安全地存储在 Azure Blob 存储中。区块链智能合约管理数据访问,确保只有授权的专家才能检索和分析扫描。Azure 机器学习用于训练和部署用于癌症分类的最先进的机器学习模型。
该框架的性能使用准确性、精度、召回率和 1-等指标进行评估,展示了集成方法在提高诊断准确性和数据安全性方面的有效性。
该框架使用不同分割比(70-30、80-20、90-10)的 DenseNet、ResNet50 和 MobileNet 模型对肺癌和结肠癌的分类达到了令人印象深刻的 100%的准确率。1-和 k 折交叉验证(5 折和 10 折)的准确率也表现出色,值超过 99.9%。实时通知和安全的远程咨询提高了诊断过程的效率和透明度,有助于改善患者的治疗效果并简化癌症管理。