Suppr超能文献

人工智能在阿尔茨海默病诊断中的应用:一项文献计量分析。

The application of artificial intelligence in diagnosis of Alzheimer's disease: a bibliometric analysis.

作者信息

An Xiaoqiong, He Jun, Bi Bin, Wu Gang, Xu Jianwei, Yu Wenfeng, Ren Zhenkui

机构信息

Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, China.

Guizhou Provincial Center for Clinical Laboratory, Guiyang, China.

出版信息

Front Neurol. 2024 Dec 5;15:1510729. doi: 10.3389/fneur.2024.1510729. eCollection 2024.

Abstract

Alzheimer's disease (AD) is a neurodegenerative disorder that severely impacts cognitive function, posing significant physical and psychological burdens on patients and substantial economic challenges to families and society, particularly in aging populations where its prevalence is rising. Current diagnostic and therapeutic strategies, including pharmacological treatments and non-pharmacological interventions, exhibit considerable limitations in early diagnosis, etiological treatment, and disease management. This study aims to investigate the application of artificial intelligence (AI) in the early diagnosis and progression monitoring of AD through a bibliometric analysis of relevant literature. A systematic search in the Web of Science Core Collection identified 530 publications related to AI and AD, consisting of 361 original research articles and 169 review articles, with a notable increase in annual publication rates, particularly between 2019 and 2024. The United States and China emerged as leading contributors, emphasizing the importance of international collaboration. Institutional analysis revealed that Harvard University and Indiana University System are at the forefront, highlighting the role of academic institutions in fostering interdisciplinary research. Furthermore, the Journal of Alzheimer's Disease was identified as the most influential publication outlet. Key highly cited papers provided essential theoretical foundations for ongoing research. This study underscores the growing relevance of AI in AD research and suggests promising avenues for future investigations, particularly in enhancing diagnostic accuracy and therapeutic strategies through advanced data analytics and machine learning techniques.

摘要

阿尔茨海默病(AD)是一种神经退行性疾病,严重影响认知功能,给患者带来巨大的身心负担,也给家庭和社会带来重大经济挑战,在患病率不断上升的老年人群中尤为如此。目前的诊断和治疗策略,包括药物治疗和非药物干预,在早期诊断、病因治疗和疾病管理方面存在相当大的局限性。本研究旨在通过对相关文献的文献计量分析,探讨人工智能(AI)在AD早期诊断和病情监测中的应用。在科学网核心合集进行的系统检索共识别出530篇与AI和AD相关的出版物,其中包括361篇原创研究文章和169篇综述文章,年发表率显著上升,尤其是在2019年至2024年期间。美国和中国是主要贡献国,凸显了国际合作的重要性。机构分析表明,哈佛大学和印第安纳大学系统处于领先地位,突出了学术机构在促进跨学科研究方面的作用。此外,《阿尔茨海默病杂志》被确定为最具影响力的出版刊物。关键的高被引论文为正在进行的研究提供了重要的理论基础。本研究强调了AI在AD研究中日益增长的相关性,并为未来的研究提出了有前景的途径,特别是通过先进的数据分析和机器学习技术提高诊断准确性和治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/703f/11655329/54f8294f8f16/fneur-15-1510729-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验