Suppr超能文献

利用CellAgentChat中基于代理的框架从单细胞和空间转录组学中解析细胞间相互作用。

Harnessing agent-based frameworks in CellAgentChat to unravel cell-cell interactions from single-cell and spatial transcriptomics.

作者信息

Raghavan Vishvak, Zheng Yumin, Li Yue, Ding Jun

机构信息

School of Computer Science, McGill University, Montreal, Quebec H3A 2A7, Canada.

Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.

出版信息

Genome Res. 2025 Jun 2. doi: 10.1101/gr.279771.124.

Abstract

Understanding cell-cell interactions (CCIs) is essential yet challenging owing to the inherent intricacy and diversity of cellular dynamics. Existing approaches often analyze global patterns of CCIs using statistical frameworks, missing the nuances of individual cell behavior owing to their focus on aggregate data. This makes them insensitive in complex environments where the detailed dynamics of cell interactions matter. We introduce CellAgentChat, an agent-based model (ABM) designed to decipher CCIs from single-cell RNA sequencing and spatial transcriptomics data. This approach models biological systems as collections of autonomous agents governed by biologically inspired principles and rules. Validated across eight diverse single-cell data sets, CellAgentChat demonstrates its effectiveness in detecting intricate signaling events across different cell populations. Moreover, CellAgentChat offers the ability to generate animated visualizations of single-cell interactions and provides flexibility in modifying agent behavior rules, facilitating thorough exploration of both close and distant cellular communications. Furthermore, CellAgentChat leverages ABM features to enable intuitive in silico perturbations via agent rule modifications, facilitating the development of novel intervention strategies. This ABM method unlocks an in-depth understanding of cellular signaling interactions across various biological contexts, thereby enhancing in silico studies for cellular communication-based therapies.

摘要

由于细胞动力学固有的复杂性和多样性,理解细胞间相互作用(CCI)至关重要但也具有挑战性。现有方法通常使用统计框架分析CCI的全局模式,由于专注于汇总数据而忽略了单个细胞行为的细微差别。这使得它们在细胞相互作用的详细动态很重要的复杂环境中不敏感。我们引入了CellAgentChat,这是一种基于代理的模型(ABM),旨在从单细胞RNA测序和空间转录组学数据中解读CCI。这种方法将生物系统建模为由受生物启发的原则和规则支配的自主代理集合。通过八个不同的单细胞数据集进行验证,CellAgentChat证明了其在检测不同细胞群体间复杂信号事件方面的有效性。此外,CellAgentChat能够生成单细胞相互作用的动画可视化,并在修改代理行为规则方面提供灵活性,便于全面探索近距离和远距离的细胞通信。此外,CellAgentChat利用ABM的特性,通过修改代理规则实现直观的计算机模拟扰动,促进新型干预策略的开发。这种ABM方法能够深入理解各种生物背景下的细胞信号相互作用,从而加强基于细胞通信疗法的计算机模拟研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验