Meakins-Christe Laboratories, Research Institute of McGill University Health Centre, 1001 Decarie Blvd, Montreal, H4A 3J1, Quebec, Canada.
Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Blvd, Montreal, H4A 3J1, Quebec, Canada.
Nat Commun. 2024 Jul 16;15(1):5989. doi: 10.1038/s41467-024-50150-1.
Single-cell sequencing is a crucial tool for dissecting the cellular intricacies of complex diseases. Its prohibitive cost, however, hampers its application in expansive biomedical studies. Traditional cellular deconvolution approaches can infer cell type proportions from more affordable bulk sequencing data, yet they fall short in providing the detailed resolution required for single-cell-level analyses. To overcome this challenge, we introduce "scSemiProfiler", an innovative computational framework that marries deep generative models with active learning strategies. This method adeptly infers single-cell profiles across large cohorts by fusing bulk sequencing data with targeted single-cell sequencing from a few rigorously chosen representatives. Extensive validation across heterogeneous datasets verifies the precision of our semi-profiling approach, aligning closely with true single-cell profiling data and empowering refined cellular analyses. Originally developed for extensive disease cohorts, "scSemiProfiler" is adaptable for broad applications. It provides a scalable, cost-effective solution for single-cell profiling, facilitating in-depth cellular investigation in various biological domains.
单细胞测序是剖析复杂疾病细胞复杂性的重要工具。然而,其高昂的成本限制了它在广泛的生物医学研究中的应用。传统的细胞去卷积方法可以从更经济实惠的批量测序数据中推断细胞类型比例,但在提供单细胞水平分析所需的详细分辨率方面存在不足。为了克服这一挑战,我们引入了“scSemiProfiler”,这是一种结合了深度生成模型和主动学习策略的创新计算框架。该方法通过融合批量测序数据和从少数精心挑选的代表中进行的靶向单细胞测序,巧妙地推断出大型队列中的单细胞谱。在异构数据集上的广泛验证验证了我们的半分析方法的精确性,与真实的单细胞分析数据紧密一致,并支持更精细的细胞分析。“scSemiProfiler”最初是为广泛的疾病队列开发的,也适用于广泛的应用。它为单细胞分析提供了一种可扩展且具有成本效益的解决方案,促进了各个生物学领域的深入细胞研究。