Suppr超能文献

基于多策略改进灰狼优化算法的磁目标定位方法

Magnetic targets positioning method based on multi-strategy improved Grey Wolf optimizer.

作者信息

Lu Binjie, Li Zongji, Zhang Xiaobing

机构信息

Naval University of Engineering, Wuhan, 430033, Hubei, China.

The 92279 Unit of the PLA, Qingdao, 266209, Shandong, China.

出版信息

Sci Rep. 2025 May 2;15(1):15452. doi: 10.1038/s41598-025-00451-2.

Abstract

Magnetic target state estimation is a widely applied technology, but it also faces many challenges in practical applications. One of the most critical challenges is the issue of estimation accuracy. The Grey Wolf Optimizer (GWO) is one of the more successful swarm intelligence algorithms in recent years, but its shortcomings have also been exposed when facing increasingly complex problems. Therefore, a Multi-Strategy Improved Grey Wolf Optimizer (MSIGWO) algorithm has been proposed to enhance the accuracy of magnetic target state estimation. In the initialization phase, Tent chaos mapping is introduced to enhance population diversity, prevent falling into local optima, and improve convergence speed. Multi-population fusion evolution strategies enhance population diversity, convergence accuracy, and global search ability. Nonlinear convergence factors better balance exploration and exploitation behaviors. Dynamic weight strategies increase the diversity of search samples and reduce the likelihood of falling into local optima. Adaptive dimensional learning better balances local and global searches, enhancing population diversity. Adaptive Levy flight enhances the ability to jump out of local optima and ensures convergence speed. In the CEC2018 benchmark function set of 29 benchmark function problems and magnetic target state estimation problems, the proposed MSIGWO was tested, and statistical indicators and Friedman test results show that compared with GWO and its advanced variants, the MSIGWO algorithm has superior performance. The application of this algorithm in magnetic target state estimation problems has proven its effectiveness and applicability.

摘要

磁目标状态估计是一项广泛应用的技术,但在实际应用中也面临诸多挑战。最关键的挑战之一是估计精度问题。灰狼优化算法(GWO)是近年来较为成功的群体智能算法之一,但在面对日益复杂的问题时其缺点也暴露出来。因此,提出了一种多策略改进灰狼优化算法(MSIGWO)以提高磁目标状态估计的精度。在初始化阶段,引入帐篷混沌映射以增强种群多样性,防止陷入局部最优,并提高收敛速度。多种群融合进化策略增强了种群多样性、收敛精度和全局搜索能力。非线性收敛因子更好地平衡了探索和利用行为。动态权重策略增加了搜索样本的多样性并降低了陷入局部最优的可能性。自适应维度学习更好地平衡了局部和全局搜索,增强了种群多样性。自适应莱维飞行增强了跳出局部最优的能力并确保了收敛速度。在包含29个基准函数问题的CEC2018基准函数集以及磁目标状态估计问题中对所提出的MSIGWO进行了测试,统计指标和弗里德曼检验结果表明,与GWO及其改进变体相比,MSIGWO算法具有优越的性能。该算法在磁目标状态估计问题中的应用证明了其有效性和适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/963a/12048549/f5d26691091b/41598_2025_451_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验